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Instanton Floer homology, sutures, and Euler characteristics

Zhenkun Li and Fan Ye

Abstract. This is a companion paper to an earlier work of the authors. In this paper, we provide
an axiomatic definition of Floer homology for balanced sutured manifolds and prove that the
graded Euler characteristic y,, of this homology is fully determined by the axioms we proposed.
As a result, we conclude that y, (SHI(M, y)) = xo(SFH(M, y)) for any balanced sutured
manifold (M, y). In particular, for any link L in S3, the Euler characteristic Xer (KHI(S 3,L))
recovers the multi-variable Alexander polynomial of L, which generalizes the knot case. Com-
bined with the authors’ earlier work, we provide more examples of (1, 1)-knots in lens spaces
whose KHI and HFK have the same dimension. Moreover, for a rationally null-homologous
knot in a closed oriented 3-manifold Y, we construct canonical Z-gradings on KHI(Y, K), the
decomposition of 7#(Y) discussed in the previous paper, and the minus version of instanton
knot homology KHI™ (Y, K) introduced by Zhenkun Li.
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1. Introduction

Sutured manifold theory was introduced by Gabai [14], and Floer theory was intro-
duced by Floer [10]. They are both powerful tools in the study of 3-manifolds and
knots. The first combination of these theories, called sutured Floer homology, was
introduced by Juhdsz [22] based on Heegaard Floer theory, with some pioneering
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work done by Ghiggini [16] and Ni [48]. Later, Kronheimer and Mrowka made ana-
logous constructions in monopole (Seiberg—Witten) theory and instanton (Donaldson—
Floer) theory [30]. Different versions of Floer theories have different merits. For
example, Heegaard Floer theory is more computable, while instanton theory is closely
related to representation varieties of fundamental groups. Hence, it is important to
understand the relationship between different versions of Floer theories. In this line,
Lekili [39] and Baldwin and Sivek [7] proved that sutured (Heegaard) Floer homology
is isomorphic to sutured monopole homology, though the relation to sutured instanton
homology is still open.

Conjecture 1.1 ([30, Conjecture 7.24]). For a balanced sutured manifold (M, y), we
have
SHI(M, y) =~ SFH(M, y) ® C.

In particular, for a knot K in a closed oriented 3-manifold Y, there are isomorphisms
1Y)~ HF(Y)® C and KHI(Y,K) =~ HFK(Y,K) ® C.

Here SHI is sutured instanton homology [30], SFH is sutured (Heegaard) Floer homo-
logy [221, I* is framed instanton Floer homology [32], HF is the hat version of
Heegaard Floer homology [51], KHI is instanton knot homology [30], and HFK is
the hat version of knot Floer homology [49,55].

In this paper, instead of studying the full homologies, we study their graded Euler
characteristics and obtain the following theorem.

Theorem 1.2. Suppose that (M, ) is a balanced sutured manifold and that S1,. . ., Sy
are properly embedded admissible surfaces (cf. Definition 2.21) generating the quo-
tient Hy(M, O0M)/ Tors. Then there exist 7" -gradings on SHI(M, y) and SFH(M, y)
induced by these surfaces, respectively. Equivalently, we have

SHI(M.y) = @) SHI(M. y. (S1.....Sn). (i1. .. .in))

(i1,.0sin)€L"

and a similar result holds for SFH(M, y). Moreover, there exist relative Z.»-gradings
on SHI(M, y) and SFH(M, y), respecting the decompositions. Define

Xer(SHI(M. ) := > x(SHI(M. y, (S1..... Su). (i1, o.in))) 11"+t (11)

(i1 seeesin)EL"
and define xo(SFH(M, y)) similarly. Then we have
Xer(SHI(M, y)) ~ xor(SFH(M, y)),

where ~ means two polynomials equal up to multiplication by :I:llj ! ---t,{" for some
(j1,--.,Jn) € Z".
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Remark 1.3. Suppose that 7y, ..., 1, represent generators of
H =H(M;Z)/ Tors = Hy(M,0M ;7Z)/ Tors .

Then ~ means the equality holds for elements in Z[H]/ + H.

The graded Euler characteristic yo(SFH(M, y)) was studied by Friedl, Juhész,
and Rasmussen [13]. Applying their results, we can relate the graded Euler character-
istics of links with classical invariants obtained from fundamental groups.

Consider a finitely generated group 7 = (x1,...,Xs|r1,..., 7). Let

H = H;y(;r)/ Tors

be the abelianization of 7 modulo torsions. For a generator x; and a word w, let
dw/dx; be the Fox derivative of w with respect to x;. Equivalently, it satisfies the
following conditions:

=y- ow _ du .
(1) for any word w = u - v, we have o, = ox + u

@) 34 =1and 2L = Oforany j #i.

Consider A = {0r;/0x;}; ;j as a matrix with entries in Z[H] by the projection
map Z[r] — Z[H]. Let E(x) be the ideal generated by the minor determinants of
A of order (n — 1). Since Z[H] is a unique factorization domain, one can consider
the greatest common divisor of the elements of E(;r), which is well defined up to
multiplication by a unit in £ H. This is denoted by A(;r) and called the Alexander
polynomial of w (cf. [65]). For a 3-manifold M, the Alexander polynomial of M is
defined by A(M) := A(r;1(M)). For an n-component link L in S3, we write t1,. . ., ,
for homology classes of meridians of components of L and define Ay (¢1,...,1,) :=
A(S3\int N(L)) as the multi-variable Alexander polynomial of L. 1f n = 1 and L =
K is a knot, we can fix the ambiguity of =H by assuming Ak (71) = Ag(t;') and

i

.
X

Ak (1) = 1. In this case, we call it the symmetrized Alexander polynomial of K.

Theorem 1.4. Suppose M is a compact manifold whose boundary consists of tori
Ty,..., T, withby(M) > 2. Suppose

n
y = Jmju(-m))
Jj=1

consists of two simple closed curves with opposite orientations on each torus. Suppose
H =H;(M;Z)/ Tors and [m1], . .., [my] are homology classes. Then we have

Xer(SHI(M, ) = AM) - [ [(Im;]— 1) € Z[H]/ £ H.
ji=1
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In particular, suppose L C S is an n-component link with n > 2. Define

n

KHI(L) := SHI<S3\intN(L), Jm,u (—mj)), (12)
j=1
where my, ..., m, are meridians of components of L. Let (i1, ...,I,) denote the

Z"-grading on KHI(L) induced by Seifert surfaces of components of L. Then we
have

Aer(KHI(L)) := > g(KHI(L. (S1.....Sn). (i1, in))) - 111 -1

(i1,0resin) €L

n
~ AL, t) - [J@ =),
j=1

where ~ means the equality holds for elements in Z|H]/ £ H.

Remark 1.5. A similar result to Theorem 1.4 has been proved for link Floer homo-
logy in Heegaard Floer theory by Ozsvéith and Szab6 [54]. For instanton theory,
the case of single-variable Alexander polynomial for links in S was understood by
Kronheimer and Mrowka [29] and independently by Lim [45], while the case of the
multi-variable polynomial was unknown before.

For knots, the corresponding corollary is the following.

Theorem 1.6. Suppose K is a knot in a closed oriented 3-manifold Y. Suppose
Y(K) := Y\ int N(K) is the knot complement and by(Y(K)) = 1. Let [n] € H =
H;(Y(K); Z)/ Tors = Z(t) be the homology class of the meridian of K. Define
KHI(Y, K) similarly to KHI(L) as in (1.2). Then we have

[m] —1
Xer(KHI(Y, K)) = A(Y(K)) - —_1 € Z[H]/ £ H.
Remark 1.7. Analogous results of Theorem 1.6 in Heegaard Floer theory can be
found in [57, Proposition 2.1] and [56, Proposition 3.1]. Also, Theorem 1.6 is a gen-
eralization of work of Kronheimer and Mrowka [29] and Lim [45], in which they

proved the same results only for knots inside S3.

Remark 1.8. Since the first version of this paper, the above theorems have many
applications:

(1) in [67], Xie and Zhang used Theorem 1.4 to show that the fundamental group
of any link in S3 that is neither the unknot nor the Hopf link admits an irre-
ducible SU(2)-representation;

(2) in [43], the authors used Theorem 1.2 to compute the instanton knot homo-
logy of some extra families of (1, 1)-knots and classified all null-homologous
instanton Floer minimal knots inside an instanton L-space;
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(3) in [1], Baldwin, Li, Sivek, and Ye classified all instanton Floer minimal knots
inside the lens space L(3, 1), which finally contributed to the proof of the
theorem that the fundamental group of the 3-surgery of any nontrivial knot
admits an irreducible SU(2)-representation.

Remark 1.9. In Theorem 1.2, we relate the Euler characteristics of SHI and SFH. For
this purpose, we deal with Heegaard Floer theory directly, and prove some elementary
properties like the excision property in Section 3. An alternative approach could be
to deal with the relation between SHI and SHM first, as all necessary preparations
have already been made in [30], and then use the relation between HM. and HF*
by work of Colin, Ghiggini, and Honda [9] and Taubes [60—64], or independently
Kutluhan, Lee, and Taubes [34-38], and the relation between SHM and SFH by work
of Lekili [39] or independently Baldwin and Sivek [7].

An application of Theorem 1.6 is to compute the instanton knot homology of some
special families of knots. In [42], the authors proved the following.

Theorem 1.10 ([42, Theorem 1.6]). Suppose K C Y is a (1, 1)-knot in a lens space
(including S3). Then we have

dime KHI(Y, K) < dimg, HFK(Y, K).

Obviously, we have that a lower bound of dimc KHI(Y, K) can be obtained
from y,(KHI(Y, K)). If this lower bound coincides with the upper bound from The-
orem 1.10, then we figure out the precise dimension of KHI(Y, K). This trick applies
to (1, 1)-knots in S3, which are either homologically thin knots or Heegaard Floer
L-space knots. In [42], the authors worked with knots in S3 because prior to the
current paper, the graded Euler characteristic of instanton knot homology was only
understood in that case. On the other hand, in [68], the second author discovered a
family of (1, 1)-knots in general lens spaces whose dimp, }ﬁ:\K(Y , K) is determined
by )((H/F\K(Y, K)). Hence, with Theorem 1.6 and results in [68], we conclude the
following.

Corollary 1.11. Suppose Y is a lens space, and K C Y is a (1, 1)-knot such that

(1) either K admits an L-space surgery (cf. [57, Lemma 3.2] and [19, The-
orem 2.2]), or K is a constrained knot (cf. [68, Section 4]),

2) H1(Y(K); Z) = Z, where Y (K) is the knot complement of K.
Then, we have

dimc KHI(Y, K) = dimz HFK(Y, K).

Remark 1.12. Greene, Lewallen, and Vafaee [19] provided a clear criterion to check
if a (1, 1)-knot admits an L-space surgery.
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Remark 1.13. The condition H; (Y (K); Z) = Z is necessary since terms related to
Euler characteristics of torsion spin® structures may cancel out when we consider the
map between group rings induced by the projection

H,(Y(K); Z) — H,(Y(K); Z)/ Tors..

In a subsequent paper [43], we introduced an enhanced Euler characteristic of SHI
to deal with the torsion part of Hy (Y(K); Z) and remove the second condition in
Corollary 1.11.

Now, we explain the rough idea to prove Theorem 1.2. First, let us consider the
case of a closed oriented 3-manifold Y. The Euler characteristic of the framed instan-
ton Floer homology, y(I*#(Y)), was understood by Scaduto [58, Section 10]. The
strategy is to carry out an induction on the order of H;(Y'; Z) using exact triangles.
The grading behavior of y(/#(Y)) under a surgery exact triangle was fully described
as in [28, Section 42.3] and it is known that y(I#(Y”)) = 1 for any integral homology
sphere Y’. Hence, we can prove y(I*(Y)) = |H,(Y; Z)| inductively.

However, the above argument requires more care when we take into account
gradings associated to surfaces inside 3-manifolds. Suppose R C Y is a closed homo-
logically essential surface. Then R induces a Z-grading on I#(Y) by considering
the generalized eigenspaces of the linear action j(R) on I#(Y) (cf. [30, Section 7).
When trying to understand the graded Euler characteristic in this case, the previous
strategy does not apply directly. The reason is that, the surgery curves inducing the
exact triangles may have nontrivial algebraic intersections with the surface R, so the
maps in surgery exact triangles may not preserve the grading associated to R. We are
faced with the same problem when proving Theorem 1.2.

Our strategy is the following. Suppose (M, y) is a balanced sutured manifold and
suppose Si, ..., S, are properly embedded surfaces in M. Then Sy, ..., S, induce a
Z™-grading on SHI(M, y). After attaching product 1-handles along M, we can find
a framed link in the interior of the resulting manifold such that the link is disjoint
from all the surfaces. Moreover, surgeries along the link with all slopes chosen in
{0, 1} produce only handlebodies. Since the surgery link is disjoint from the surfaces
S1,..., S, that induce the Z"-grading, the maps in surgery exact triangles preserve
the grading. Hence, it suffices to understand the case of sutured handlebodies. In this
case, we can further use bypass exact triangles to reduce any sutured handlebodies to
product sutured manifolds. It is known that the Floer homology of any product sutured
manifold is 1-dimensional. Since the behavior of Euler characteristics under bypass
exact triangles and surgery exact triangles are the same for both instanton theory and
Heegaard Floer theory, we finally conclude that these two versions of Floer theories
must have the same graded Euler characteristic.
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In the above argument, it is not necessary to treat instanton theory and Heegaard
Floer theory separately. Instead, we only use some formal properties that are shared by
both theories, and hence we can deal with them at the same time. This observation can
be made more general. In Kronheimer and Mrowka’s definition of sutured (monopole
or instanton) Floer homology, they constructed a closed 3-manifold, called a closure,
out of a balanced sutured manifold in a topological manner, and defined the Floer
homology for a balanced sutured manifold to be some direct summands of the Floer
homology of its closure. Then they used the formal properties of monopole theory
and instanton theory to show that the construction is independent of the choices of
the closures. In the following series of work [3-5, 17,41], most arguments were also
carried out based on topological constructions and hence only depend on the formal
properties of Floer theories.

In this paper, we summarize the necessary properties of Floer theory that are
used to build a sutured homology for balanced sutured manifolds. (3 + 1)-TQFTs
are functors from cobordism categories to categories of vector spaces. In Section 2.1,
we proposed three extra axioms for a (3 + 1)-TQFT called

(A1) the adjunction inequality axiom;
(A2) the surgery exact triangle axiom;
(A3) the canonical Z, (mod?2) grading axiom.

A (3 4+ 1)-TQFT satisfying these axioms is called a Floer-type theory. For any
Floer-type theory H and any balanced sutured manifold (M, y), we construct a vec-
tor space SH(M, y), called the formal sutured homology of (M, y), over a suitable
coefficient field. More precisely, we have the following theorem.

Theorem 1.14. Suppose H is a (3 + 1)-TQFT and suppose (M, y) is a balanced
sutured manifold. If H satisfies Axioms (A1) and (A2), then there is a vector space
SH(M, y) well defined up to multiplication by a unit in the coefficient field F. Sup-
pose S1,...,Sy are properly embedded admissible surfaces inside (M, y). Then there
exists a 7" -grading on SH(M, y) induced by these surfaces, i.e.,

SH(M.y) = @ SH(M. y. (S1.....Sn). (i1. ... .in)). (1.3)

(i1,.esin)EL"

Furthermore, if H satisfies Axiom (A3), then there exists a relative 7Z.,-grading
SH(M, y), respecting the decomposition in (1.3). Moreover, the graded Euler charac-
teristic xor(SH(M, y)), defined similarly to (1.1) and determined up to multiplication
by a unit in £ Hy (M) / Tors, is independent of the choice of the Floer-type theory.

Remark 1.15. A priori, the definition of formal sutured homology depends on a large
and fixed integer g, which is the genus of the closure; see the Convention after Defin-
ition 2.17.
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Remark 1.16. The construction of SH is essentially due to the work of Kronheimer
and Mrowka [30]. Note that instanton theory, monopole theory and Heegaard Floer
theory all satisfy Axioms (A1), (A2), and (A3) with coefficients C, [F; and [F,, respect-
ively, up to mild modifications (cf. Section 2.1). Moreover, Axioms (Al), (A2),
and (A3) are not limited by the scope of gauge-theoretic theories mentioned above
and may hold for other more general (3 + 1)-TQFTs.

There is one further step to prove Theorem 1.2 from Theorem 1.14. For Heegaard
Floer theory, the construction coming from Theorem 1.14 is different from the ori-
ginal version of sutured (Heegaard) Floer homology defined by Juhdsz [22]. It has
been shown by Lekili [39] and Baldwin and Sivek [7] that these two constructions
coincide with each other. Although not shown explicitly, their proofs also imply that
the isomorphism between these two constructions respects gradings. Based on their
work, we show the following proposition.

Proposition 1.17. Suppose (M, y) is a balanced sutured manifold and suppose H =
H;(M)/ Tors. Suppose SHF is the sutured homology for balanced sutured manifolds
constructed in Theorem 1.14 for Heegaard Floer theory. Then we have

Xer(SHF(M. y)) = xor(SFH(M. y)) € Z[H]/ + H.

Next, we discuss the Z,-grading on SH(M, y). Following [30], to construct
SH(M, y), we first construct a closure Y from (M, y). From a fixed balanced sutured
manifold (M, y), we can construct infinitely many different closures (with the same
genus), and the Floer homology of each closure has its own (absolute) Z,-grading.
Although we can construct isomorphisms between the Floer homology of different
closures, the maps do not necessarily respect the Z,-gradings. See [29, Section 2.6]
for a concrete example. Thus, we cannot obtain a canonical Z,-grading on SH(M, y)
and the Euler characteristic can only be defined up to a sign (since we do know the
maps between closures are homogeneous with respect to the Z,-gradings).

However, if we focus on balanced sutured manifolds whose underlying 3-mani-
folds are knot complements of null-homologous knots and whose sutures have two
components, it is possible to obtain a canonical Z,-grading. The idea is to compare
closures of a general knot with closures of the unknot in S3 and then fix the relative
Z,-grading. When the suture on the boundary of the knot complement consists of
two meridians, we recover the canonical Z,-grading on KHI(Y, K) already known
by Floer [11] and Kronheimer and Mrowka [29]. When the suture on the boundary
of knot complement consists of two curves of slope —n, this canonical Z,-grading is
also carried over to the following decomposition of I#(Y) introduced by the authors.
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Theorem 1.18 ([42, Theorem 1.12]). Suppose Y is a closed 3-manifold, and K C Y
is a null-homologous knot. Suppose Y is obtained from Y by performing the q/p
surgery along K with q > 0. Then there is a decomposition up to isomorphism

q—1
I'Y) =PI ..

i=0
associated to the knot K and the slope q/ p.

Proposition 1.19. Under the hypothesis and the statement of Theorem 1.18, there is
a well-defined 7.»-grading on I#(Y ,i). Moreover, fori = 0,...,q — 1, we have

x(IFY i) = x(I}Y)).

Corollary 1.20. Suppose K is a knot in an integral homology sphere Y. Suppose
further that r = q/ p is a rational number with ¢ > 0. Then, the 3-manifold Y, (K) is
an instanton L-space (i.e., dimc I1#(Y) = |H(Y; Z)|) if and only if fori =0, ...,
q — 1, we have

1Y, (K),i) = C.

Proof. If fori =0,...,q — 1, we have I”(Yr(K), i) = C, then it follows directly
from Theorem 1.18 that Y, (K) is an instanton L-space.

Now, suppose Y;(K) is an instanton L-space. Applying Proposition 1.19 to Y, we
have

dime I#(Y,(K)) = [x(I*(Y,(K)))]
qg—1 q—1
= | Yt )| = [ at | =a. a4
i=0 i=0

By assumption, Y, (K) is an instanton L-space, i.e.,
dime 7#(Y,(K)) = [Hi(Y;(K))| = ¢.
Hence, the inequality in (1.4) is sharp, which implies dimc 7#(Y,(K),i) = 1. ]

The techniques to prove Proposition 1.19 can also be applied to study the minus
version of instanton knot homology KHI™, which was introduced by the first author
in [41, Section 5].

Proposition 1.21. Suppose K C S3 is a knot and Ak (t) is the symmetrized Alex-
ander polynomial of K. Then there is a canonical Z,-grading on KHI™(—S?3, K).
Furthermore, we have

+o0
D X(KHI (=83, K.i)) 1! = —Ag(1)- Y 17
i=0

i€Z



Z.LiandF. Ye 210

Remark 1.22. The analogous result of Proposition 1.21 in Heegaard Floer theory had
been known by the work of Ozsvath and Szabé [49].

Conventions. If it is not mentioned, homology groups and cohomology groups are
with Z coefficients, i.e., we write H4(Y) for H«(Y; Z). A general field is denoted
by [, and the field with two elements is denoted by F,.

If it is not mentioned, all manifolds are smooth and oriented. Moreover, all man-
ifolds are connected unless we indicate disconnected manifolds are also considered.
This usually happens when discussing cobordism maps from a (3 + 1)-TQFT.

Suppose M is an oriented manifold. Let —M denote the same manifold with the
reverse orientation, called the mirror manifold of M. If it is not mentioned, we do
not consider orientations of knots. Suppose K is a knot in a 3-manifold M. Then
(—M, K) is the mirror knot in the mirror manifold.

For a manifold M, let int(M) denote its interior. For a submanifold A in a mani-
fold Y, let N(A) denote the tubular neighborhood. The knot complement of K in Y
is denoted by Y(K) = Y\ int(N(K)).

For a simple closed curve on a surface, we do not distinguish between its homo-
logy class and itself. The algebraic intersection number of two curves o and 8 on a
surface is denoted by « - B, while the number of intersection points between « and
is denoted by |a N B]|. A basis (m, ) of Hy(T?; Z) satisfies m - | = —1. The surgery
means the Dehn surgery and the slope ¢/ p in the basis (m, [) corresponds to the curve
gm + pl.

A knot K C Y is called null-homologous if it represents the trivial homology class
in Hy(Y'; Z), while it is called rationally null-homologous if it represents the trivial
homology class in Hy (Y; Q). We write Z,, for Z /nZ.

An argument holds for large enough or sufficiently large n if there exists a fixed
N € Z so that the argument holds for any integern > N.

Organization. The paper is organized as follows. In Section 2, we introduce three
axioms to define formal sutured homology for balanced sutured manifolds and prove
the first part of Theorem 1.14. Moreover, we state many useful properties for the
proof of the second part of Theorem 1.14. In Section 3, we discuss the modification
of Heegaard Floer theory to make it suitable to formal sutured homology and prove
Proposition 1.17. In Section 4, we prove the second part of Theorem 1.14. In Sec-
tion 5, we construct a canonical Z,-grading for balanced sutured manifolds obtained
from knots in closed 3-manifolds and prove Proposition 1.19 and Proposition 1.21.
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2. Axioms and formal properties for sutured homology

In this section, we construct formal sutured homology and prove some basic proper-
ties.

2.1. Axioms of a Floer-type theory for closed 3-manifolds

Let Cob>*! be the cobordism category whose objects are closed oriented (possibly
disconnected) 3-manifolds, and whose morphisms are oriented (possibly disconnec-
ted) 4-dimensional cobordisms between closed oriented 3-manifolds. The disjoint

union gives a monoidal structure on Cob>*!

and reversing the orientation induces
the dual of an object. Let Vecty be the category of [F-vector spaces, where IF is a suit-
ably chosen coefficient field. The monoidal and dual structure on Vecty is induced
by tensor product and dual space.

A (3 4+ 1)-dimensional topological quantum field theory, or in short (34 1)-TQFT,

is a symmetric monoidal functor
H: Cob3™! — Vectp

preserving the dual structure. For a closed oriented 3-manifold Y, we write H(Y') for
the related vector space, called the H-homology of Y . For an oriented cobordism W,
we write H(W) for the induced map between H-homologies of boundaries, called
the H-cobordism map associated to W. If H is fixed, then we simply write homology
and cobordism map for H-homology and H-cobordism map, respectively. Note that
by the definition of the involved categories, we have

H(Y;UY,;) =H({Y;) ®r H(Y,) and H(-Y) = Homp(H(Y), F).

It is well known that Floer theories are special cases of (3 + 1)-TQFTs. Summar-
ized from known Floer theories, we propose the following definition.

Definition 2.1. A (3 + 1)-TQFT H is called a Floer-type theory if it satisfies the
following three Axioms (A1), (A2), and (A3).

Al. Adjunction inequality. For a closed oriented 3-manifold ¥ and a second homo-
logy class @ € Ha(Y), there is a Z-grading of H(Y') associated to «, i.e., we have

H(Y) = (DH(Y. e.i).

i€Z
This grading satisfies the following properties.

A1-1. For any odd integer i, we have H(Y, «,i) = 0.
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A1-2. For i € Z\{0}, the summand H(Y, o, ) is a finite-dimensional vector space
over IF.

A1-3. Fori € 7, we have H(Y, «,i) = H(Y, o, —1).

A1l-4. Adjunction inequality. Suppose X is a connected closed oriented surface
embedded in Y with g(X) > 1. For |i| > 2g(X) — 2, we have H(Y, [X],i) = 0.

A1-5. Suppose X, is a connected closed oriented surface of genus g(X) > 2. Sup-
pose Y = S! x B, and £ = {1} x ,. Then we have

H(Y,[Z],2¢(Z) —2) = F.

A1-6. The gradings coming from multiple homology classes are compatible with
each other, i.e., if we have 1, ..., ®, € Ha(Y), then there is a Z"-grading on H(Y),
denoted by
H(Y) = PHY. (1.....an). (i1 .. in)).
(i1seeesin)EZ"

Moreover, we have

H(Y. o1 + -+ +an.i) = PHY. (1. ). (i1... .. in)).

(i1 seemrin) €T
i1 4ty =i

A1-7. Suppose W is an oriented cobordism from Y; to Y,. Suppose «q,...,q, €
H, (Y1) and B4, ..., Bn € Ha(Y>) are homology classes such that fori = 1,...,n, we
have

o; = Bi € Ha(W).

Then the cobordism map H(W) respects the grading associated to those homology
classes:

H(W)ZH(Yl,(Oll,...,Oln), (il, .. ,ln)) — H(Yl, (,31, - .,ﬁn), (il,...,in)).

A2. Surgery exact triangle. Suppose M is a connected compact oriented 3-mani-
fold with toroidal boundary. Let y;, y», y3 be three connected oriented simple closed
curves on dM such that

Yi*Y2=V2-Y3=Vy3 Y1 =—L

Let Y3, Y>, and Y3 be the Dehn fillings of M along curves y1, y», and y3, respectively.
Then there is an exact triangle

H(Y)) H(Y2)

\ / (2.1

H(Y3)
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Moreover, maps in the above triangle are induced by the natural cobordisms associ-
ated to different Dehn fillings.

Remark 2.2. It is worth mentioning that Axioms (A1) and (A2) are enough for
defining formal sutured homology for balanced sutured manifolds. The following
Axiom (A3) is only involved when considering Euler characteristics.

A3. Z,-grading. For any closed oriented 3-manifold Y, there is a canonical Z,-grad-
ing on H(Y'), denoted by

H(Y) = Ho(Y) & Hy (Y).

This grading satisfies the following properties.

A3-1. The Z,-grading is compatible with the grading in Axiom (A1). More precisely,
if we have a1, ...,a, € Hy(Y), then there is a Z, @ Z"-grading on H(Y):

H) =  PH;¥.(1.....an).(>01.....in)).

J€{0,1} (irse.in)€Z”

A3-2. Suppose X, is a connected closed oriented surface of genus g > 2. Suppose
Y = S!x X, and ¥ = {1} x Z,. Then we have

H(Y,[X].2g —2) = H,(Y,[Z].2¢g — 2) =~ F.

A3-3. Suppose W is a cobordism from Y; to Y,. Then H(W) is homogeneous with
respect to the canonical Z,-grading. Its degree can be calculated by the following
degree formula

dea(H(W)) = 3 (W) + 0 (W) + by(¥3) = bi(41) + bo(¥2) — (V1)) (mod 2)
2.2)

Remark 2.3. The canonical Z,-grading is essentially determined by Axioms (A3-2)
and (A3-3) (cf. [28, Section 25.4]). The normalization of the Z,-grading for the gen-
erator of H(Y, [X], 2g — 2) is not essential. Assuming

shifts the canonical Z,-grading for all 3-manifolds. It is worth mentioning that two
existing discussions on this Z,-grading in [33,44], adopted different normalizations.

The degrees of the maps in Axiom (A2) were described explicitly by Kronheimer
and Mrowka [28, Section 42.3]. For the convenience of later usage, we present the
discussion here.
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Proposition 2.4 ([28, Section 42.3]). Suppose § is a unit in ker(i.) for the map
ix:H1(0M: Q) — Hi(M: Q).

In the surgery exact triangle (2.1), we can determine the parities of the maps fi1, f2,
and f3 as follows.
(1) Ifthereisani = 1,2,3 so that y; -8 = 0, then f;_y is odd and the other two
are even.
Q) If yi -6 0 forany i = 1,2,3, then there is a unique j € {1,2,3} so that
yj - 8 and yjy1 - 8 are of the same sign. Then the map f; is odd and the other

two are even.

Here the indices are taken mod 3.
With Proposition 2.4, the following lemma is straightforward.

Lemma 2.5. In the surgery exact triangle (2.1), after arbitrary shifts on the canon-
ical Z»-gradings on H(Y;) for alli = 1,2, 3, exactly one of the following two cases
happens.

(1) If all three maps f; are odd, then we have
x(H(T)) + x(H(Y2)) + x(H(Y3)) = 0.
(2) If there exists i = 1,2, 3 so that f; is odd and the other two are even, then
x(H(Yi-1)) = y(H(Y;)) + x(HY;11)).
Here the indices are taken mod 3.

Remark 2.6. If there are no shifts, then case (2) in Lemma 2.5 happens due to Pro-
position 2.4.

In this paper, we discuss three Floer theories, namely, instanton (Donaldson—
Floer) theory, monopole (Seiberg—Witten) theory, and Heegaard Floer theory. How-
ever, for any of these theories, we need some modifications as follows. Suppose Y is
an object of Cob>*! and W is a morphism of Cob>*!.

Instanton theory. We consider the decorated cobordism category Cobz)Jrl rather
than Cob>™!. The objects are admissible pairs (Y, w), where @ C Y is a l-cycle
such that any component of Y contains at least one component of . The admissible
condition means that for any component Y of Y, there exists a closed oriented sur-
face ¥ C Yy such that g(X) > 1 and the algebraic intersection number - ¥ is odd.
Morphisms are pairs (W, v), where v is a 2-cycle restricting to the given 1-cycles on
dW . The H-homology and the H-cobordism map are denoted by /®(Y) and (W, v)
(cf. [11]), respectively.
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It is worth mentioning that for an admissible pair (¥, ), we need [w] # 0 €
HY (Y;Z) as a necessary condition (see [11]), so b1(Y) > 0. Thus, strictly speaking,
the objects of Cob_;™! do not involve all closed oriented 3-manifolds.

We choose the coefficient field to be IF = C. The decorations @ and v do not influ-
ence Axiom (A1), where the Z-grading is induced by the generalized eigenspaces of
(u(e), u(pt)) actions for o € H(Y') (cf. [30, Section 7]). In particular, Axiom (A1-5)
follows from [30, Proposition 7.4], where we choose @ = S x {pt}.

In the original statement of the surgery exact triangle in [11], different 3-mani-
folds in the surgery exact triangle may have different choices of w. However, by the
argument in [0, Section 2.2], we can assume that, in Axiom (A2), the 1-cycle w is
unchanged in all manifolds involved in the triangle.

The canonical Z,-grading for instanton theory was discussed by Kronheimer and
Mrowka [29, Section 2.6]. Indeed, the degree formula (2.2) is from their discussion.

Monopole theory. For connected 3-manifolds and cobordisms with connected
incoming and outgoing ends, Kronheimer and Mrowka [28] constructed well-defined
vector spaces and linear maps in monopole theory (}/Il\\/l. or P\I-l\//[.). However, the
cases for disconnect 3-manifolds or cobordisms with disconnected ends are subtle,
and hence monopole theory may not satisfy all assumptions of (3 + 1)-TQFT. For-
tunately, when restricting to nontorsion spin® structure, Kronheimer and Mrowka
showed that two versions HM, and HM, are canonically identified, and they induce
well-defined vector spaces and linear maps that extend to disconnected cases (cf. [28,
Section 2.5-2.6]), which are denoted by HM(Y') and HM(W) (the spin® structure is
omitted), respectively. In such case, we can still check the axioms for Floer-type the-
ory.

The Z-grading in Axiom (Al) is induced by {(c;(s), @) for s € Spin°(Y) and
a € Hy(Y) (cf. [30, Section 2.4]). In particular, Axiom (A1-5) follows from [30,
Lemma 2.2].

We choose the coefficient field to be F = [F,. This is because originally the surgery
exact triangle is only proved in characteristic two, by work of Kronheimer, Mrowka,
Ozsvith, and Szabé [31]. It is worth mentioning that the surgery exact triangle with Q
coefficients was proved by Lin, Ruberman, and Saveliev [46, Section 4], and the one
with Z coefficients was under working by Freeman [12]. So, we can extend the dis-
cussion to F = Q or C for monopole theory. It is also worth mentioning that in [30],
when Kronheimer and Mrowka first introduced sutured monopole homology, they
worked only with Z coefficients (and did not use the surgery exact triangle). The case
of I, coefficients was later verified by Sivek [59, Section 2.2]. Sivek’s modification
can be applied to any field coefficient since all Tor terms vanish for vector spaces.
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The canonical Z,-grading for monopole theory was discussed by Kronheimer and
Mrowka [28, Section 25.4]. When considering cobordisms of connected 3-manifolds,
the degree formula (2.2) is the same as the formula in [28, Definition 25.4.1].

Heegaard Floer theory. Similar to monopole theory, the connected cases and dis-
connected cases need to be considered separately. For connected cases, Ozsvath and
Szabd [50,51,53] constructed vector spaces and linear maps in Heegaard Floer theory
(HF~ and HF"). However, there is some naturality problem, which was resolved by
Juhasz, Thurston, and Zemke [25] and Zemke [69,71], at the cost of adding basepoints
and paths to 3-manifolds and cobordisms, respectively. In Section 3.2, we will pro-
pose a new transitive system to get rid of the dependence of basepoints and paths.
The H-homology and the H-cobordism map in such cases are denoted by HF(Y)
and HF(W).

Zemke’s construction also extend to disconnected cases, at the cost of introducing
graphs in cobordisms. The cobordism maps would be different when the cobordisms
are the same but graphs are different (for example, see Corollary 3.21, where S , and
S, both correspond the product cobordism but the graphs are different).

Another subtlety is the duality. The duality for connected cases was proved in
[53, Theorem 3.5], which is on the homology level. However, the duality for discon-
nected cases (with graphs) was proved only on the chain level [70]. Since the chain
complexes constructed by Zemke are over F,[U] (which is not a field), the duality on
the chain level does not imply the duality on the homology level (the example about
S and S - also indicates this subtlety).

When we construct the formal sutured homology, we only need two kinds of
cobordisms, ones from Dehn surgeries and ones from Floer’s excision theorem. The
first kind is in connected cases and the second kind is possibly in disconnected cases.
In Section 3.3, we construct cobordisms with specific graphs to prove Floer’s excision
theorem in Heegaard Floer theory. Hence, we can still check Axioms for Floer-type
theory and use Heegaard Floer theory to build a formal sutured homology following
the strategy in Section. 2.2.

We choose the coefficient field to be F = IF,. This is because we have to use the
naturality results in [25], which works only for [F5.

For characteristic zero, the naturality results for closed 3-manifolds were obtained
by Gartner in [15]. However, the naturality results for cobordisms are still under work-
ing. Hence, we choose to focus on characteristic two.

Similar to monopole theory, the Z-grading in Axiom (A1) is induced by (c;(s), )
for s € Spin®(Y) and « € Hy(Y). In particular, Axiom (1-5) follows from [39,
Corollary 17]. The surgery exact triangle in Axiom (A2) is proved by Ozsviath and
Szabé [50].
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There are many ways to fix the Z,-grading for Heegaard Floer theory. See [50,
Section 10.4] and [13, Section 2.4]. However, we can arrange the canonical Z,-grad-
ing to be the same as those for instanton theory and monopole theory. This is possible
because the degree formula (2.2) only depends on algebraic-topological information
of cobordisms and 3-manifolds.

2.2. Formal sutured homology of balanced sutured manifolds

In [30], Kronheimer and Mrowka constructed sutured monopole homology SHM and
sutured instanton homology SHI by considering closures of balanced sutured mani-
folds. The discussion and construction in this section are based on [3, 30] except for
the proof of Proposition 2.11.

Definition 2.7 ([22, Definition 2.2]). A balanced sutured manifold (M, y) consists
of a compact 3-manifold M with non-empty boundary together with a closed 1-sub-
manifold y on M. Let A(y) = [—1, 1] x y be an annular neighborhood of y C M
and let R(y) = oM\ int(A(y)), such that they satisfy the following properties.

(1) Neither M nor R(y) has a closed component.

(2) If 0A(y) = —dR(y) is oriented in the same way as y, then we require this
orientation of dR(y) induces the orientation on R(y), which is called the
canonical orientation.

(3) Let R4 (y) be the part of R(y) for which the canonical orientation coincides
with the induced orientation on dM from M, and let R_(y) = R(y)\R+(y).
We require that y(R4+(y)) = x(R-(y)).If y is clear in the context, we simply
write Ry = Ri(y), respectively.

Definition 2.8 ([30]). Suppose (M, y) is a balanced sutured manifold. Let 7 be a
connected compact oriented surface such that the numbers of components of 07" and
y are the same. Let the preclosure M of (M, y) be

M :=MU,—_yr [-1,1]x T.
The boundary of M consists of two components

Ri =R (y)U{l}xT and R_=R_(y)U{-1}xT.

Let h: R4 = R_obea diffeomorphism which reverses the boundary orientations
(i.e., preserves the canonical orientations). Let Y be the 3-manifold obtained from M
by gluing RitoR_ by & and let R be the image of R, and R_in Y. The pair (Y, R)
is called a closure of (M, y). The genus of R is called the genus of the closure (Y, R).
For a closure (Y, R) with g(R) > 2 and a (3 + 1)-TQFT H satisfying Axiom (A1),
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define
H(Y|R) := H(Y,[R],2g(R) — 2).

Remark 2.9. For instanton theory, we also choose a point p on 7 and choose a
diffeomorphism % such that 4({1} x p) = {—1} x p. The image of [-1,1] X pin Y
becomes a 1-cycle w and we have w - R = 1. We use (Y, R, w) for the definition of a
closure. We do not mention this subtlety later since everything works well under this
modification.

Suppose (Y1, R1) and (Y>, R») are two closures of (M, y) of the same genus. We
now construct a canonical map

@15: H(Y1|R1) — H(Y2|R2).

Note that Y, can be obtained from Y; as follows. There exists an orientation pre-
serving diffeomorphism %1,: Ry — Rj so that if we cut Y7 open along R; and reglue
using /12, then we obtain a new 3-manifold Y| together with the surface R} C Y.
Furthermore, there exists a diffeomorphism ¢: Y| — Y> such that

lu =idy and $(R}) = Ra.
Let X be a cobordism from Y] to Y> induced by ¢. It is straightforward to check
H(Xy): H(Y{|R}) — H(Y2|Ry)

is an isomorphism. We can regard /1, as a composition of Dehn twists along curves
on Ry:
= D o...0 D
hip = Dglo---0Dgr.

Here e; € {£1}, where e; = 1 means a positive Dehn twist, and ¢; = —1 means a
negative Dehn twist. Suppose

N={ile=—1} and P =1{i|e =1}

Note that the resulting 3-manifold of cutting ¥; open along R; and regluing by
Dé’l is the same as the resulting 3-manifold of performing a (—e; )-surgery along o; C
R; C Y;. We take a neighborhood N(R;) of Ry C Y7, and choose an identification
N(Ry) = [-1,1] x R;. Pick

—1l<hn<---<t, <1

sothatt; # Ofori = 1,...,n, and isotope ¢; to the level {z;} x Ry C N(Ry) C Yi.
Let Yp be the 3-manifold obtained from Y; by performing (—1)-surgeries along «;
for all i € P. There is a natural cobordism Xp from Y; to Yp by attaching framed
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4-dimensional 2-handles to the product [0, 1] x Y7 along «; x {1}. Furthermore, the
manifold Yp can also be obtained from Y7 by performing (—1)-surgeries along «; for
all i € N. Hence, there is a similar cobordism Xy from Yl/ to Yp. Since t; # 0, the
surface R; = {0} x R; survives in all surgeries. Let Rp C Yp be the corresponding
surface.

Definition 2.10 ([3]). Define
@1, = H(Xg) o H(Xy) ™' o H(Xp): H(Y1|R1) — H(Y2|Ry).
Proposition 2.11. The maps
H(Xp):H(Y1|R1) > H(Yp|Ry) and H(Xy):H(Y{|R}) - H(Yr|Rp)

are both isomorphisms.

Remark 2.12. Proposition 2.11 restates [3, Lemma 4.9]. However, the proof in that
paper involves a non-vanishing result for minimal Lefschetz fibrations. See [3, Pro-
position B.1]. Yet this non-vanishing result is not covered by Axioms (Al), (A2),
and (A3), so we present an alternative proof of Proposition 2.11 based on surgery
exact triangles from Axiom (A2). Also, it is worth mentioning that Baldwin and Sivek
worked with Z coefficients for monopole theory in [3], while we work with Z, coeffi-
cients. The choice of coefficients matters since the existing proof of the surgery exact
triangle in monopole theory is only carried out in I and Q.

Proof of Proposition 2.11. The cobordisms Xp and Xy are constructed similarly, so
we only prove Xp is an isomorphism. Furthermore, we can assume that P has only
one element 1. If it has more elements, then Xp is simply the composition of cobor-
disms associated to single Dehn surgeries. With this assumption, the manifold Yp is
obtained from Y; by performing a (—1)-surgery along «/;. Let Y be obtained from Y7
by performing a 0-surgery along o1, and R; survives to become Ry C Y. Then we
have an exact triangle by Axioms (A1-7) and (A2):

H(Xp)

H(Y{|Ry) H(Yp|Rp)

‘\ /

H(Yo|Ro)

To show that H(Xp) is an isomorphism, it suffices to show that H(Yy|Ry) = 0.
Indeed, since Y, is obtained from a O-surgery along o, and « can be isotoped
to be a simple closed curve on Rj, the surface Ry C Y, is compressible. Hence,
H(Yy|Ro) = 0 by the adjunction inequality in Axiom (A1-4). n
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With Proposition 2.11 settled down, the rest of the argument in [3] can be applied
to our setup verbatim, and we have the following theorem.

Theorem 2.13 ([3]). Suppose (M, ) is a balanced sutured manifold and (Y1, Ry)
and (Y2, R») are two closures of the same genus. Then the isomorphism

®15: H(Y1|Ry) — H(Y2|R3)

defined in Definition 2.10 satisfies the following properties.
(1) The map 1, is well defined up to multiplication by a unit in FF.
() If (Y1, R1) = (Y2, Ro), then
®p =id,
where = means the equation holds up to multiplication by a unit in .

(3) Ifthere is a third closure (Y3, R3) of the same genus, then we have
Qi3 = Pa3 0 Dyy.

Remark 2.14. In Baldwin and Sivek’s original work, the requirement that the two
closures have the same genus could be dropped, at the cost of involving local coef-
ficient systems. However, the naturality of Heegaard Floer theory only holds when
we restrict to one spin€ structure at a time and consider the transition map project-
ively (cf. [70, Remark 12.1], see also [26, Section 3]), which makes arguments more
subtle. Since it is enough to work with closures of a large and fixed closure in the
current paper, we choose not to discuss the local coefficients.

Definition 2.15 ([3,25]). A projectively transitive system of vector spaces over a field
I consists of
(1) aset A and collection of vector spaces {V, }qe4 Over F,

(2) a collection of linear maps {gg }a,pe4 Well defined up to multiplication by a
unit in I such that

(a) g%‘ is an isomorphism from V; to Vg for any o, B € A, called a canonical
map,

(b) g% =idy, forany « € A,
(©) gf ogy =gy foranya, B,y € A.

A morphism of projectively transitive systems of vector spaces over a field ' from
(4, {Va}. {g§}) to (B.{Uy}, {hy}) is a collection of maps { f, }ae4,yep such that

) fy‘" is a linear map from V; to U, well defined up to multiplication by a unit
inF foranyo € Aand y € B,

2) fSﬂog%‘ ihgofy“foranya,ﬂeAandy,SeB.
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A transitive system of vector spaces over a field [ if it is a projectively transit-
ive system and all equations with = are replaced by ones with =. A morphism of
transitive systems of vector spaces over a field [ is defined similarly.

We can replace vector spaces with groups or chain complexes of vector spaces
and define the projectively transitive system and the transitive system similarly.

Remark 2.16. A transitive system of vector spaces (A4, {Vy}, {gg }) over a field F
canonically defines an actual vector space over [

V=[] Va/ ~

acA

where vy ~ vg if and only if gg (vo) = vg for any vy € V,, and vg € V. A morph-
ism of transitive systems of vector spaces canonically defines a linear map between
corresponding actual vector spaces.

Convention. If F = F,, a projectively transitive system over I is simply a transitive
system since [, has only one unit. In this case, we do not distinguish the projectively
transitive system, the transitive system and the corresponding actual vector space.
For a general field IF, the morphisms between projectively transitive systems are also
called maps.

Definition 2.17. Suppose H is a (3 4+ 1)-TQFT satisfying Axioms (A1) and (A2),
and (M, y) is a balanced sutured manifold, the formal sutured homology SHE (M, y)
is the projectively transitive system consisting of
(1) the H-homology H(Y |R) for closures (Y, R) of (M, y) with a fixed and large
enough genus g.

(2) the canonical maps @ between H-homologies as in Definition 2.10.

Convention. Throughout the paper, when discussing formal sutured homology, we
will pre-fix a large enough genus. So, we omit it from the notation and write simply
SH(M, y) instead of SH® (M, y).

Remark 2.18. When H also satisfies Axiom (A3), since ® is constructed by cobor-
dism maps and their inverses, it is homogeneous with respect to the Z;-grading from
Axiom (A3). Then there exists an induced relative Z,-grading on SH(M, y).

In [4,8], Baldwin and Sivek proved the bypass exact triangle for sutured monopole
homology and sutured instanton homology. Their proof can be exported to our setup.

Theorem 2.19 ([4, Theorem 5.2] and [8, Theorem 1.21]). Suppose (M, y1), (M, y2),
(M, y3) are three balanced sutured manifold such that the underlying 3-manifold is
the same, and the sutures y1, ya, and y3 only differ in a disk as depicted in Figure 1.
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Figure 1. The bypass triangle.

Then there exists an exact triangle

SH(—M, —y1) N SH(—M, —y»)

T =

SH(_M’ _V3)

Moreover, the maps ; are induced by cobordisms and hence are homogeneous
with respect to the relative Z.,-grading on SH(M, y;).

We un-package the proof of Theorem 2.19 for later convenience.

Proposition 2.20 ([4, Section 5] and [8, Section 4]). Consider (M, y;) fori = 1,2,3
in Theorem 2.19, there is a closure (Y1, R) of (—M, —y1) with the following signific-
ance.
(1) The genus g(R) is large enough.
(2) There are pairwise disjoint curves 1, (2,3 C Y1 so that the following is true.
(a) Fori =1,2,3, we have {; Nint(M) = @ and &; can be isotoped to be
disjoint from R.
(b) Ifwe perform a suitable Dehn surgery along {1, then we obtain a closure
(Y2, R) of (—M, —y>). If we perform a suitable Dehn surgery in Y, along
Lo, then we obtain a closure (Y3, R) of (=M, —y3). If we perform a suit-
able Dehn surgery in Y3 along {3, then we obtain the closure (Y1, R) of
(—M, —y1) again.
(c) The maps 1, Yo, and Y3 are induced the cobordism associated to Dehn
surgeries along 1, {5, and 3, respectively.
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(3) There are two curves 01 and 1, on R, so that if we perform (—1)-surgeries on
both of them, with respect to the surface framings from R, then the surgeries
along 1, £, and {5 as stated in (b) lead to an exact triangle as in Axiom (A2).

2.3. Gradings on formal sutured homology

Suppose (M, y) is a balanced sutured manifold and S C (M, y) is a properly embed-
ded surface in M. If S satisfies some admissible conditions, the first author [41]
constructed a Z-grading on SHM(M, y) and SHI(M, y). In this section, we adapt
the construction to formal sutured homology SH(M, y).

Definition 2.21 ([17]). Suppose (M, y) is a balanced sutured manifold and S C M
is a properly embedded surface. The surface S is called an admissible surface if the
following holds.

(1) Every boundary component of S intersects y transversely and nontrivially.

2) %|S N y| — x(S) is an even integer.

Recall the construction of a closure of (M, y) in Definition 2.8. Let T be a con-
nected compact oriented surface of large enough genus and d7 = —y. Then we take

M=MU[-1,1]xT withdM = R, U (—R_).
Suppose n = %|85 NylanddS Ny ={p1,..., pan}.

Definition 2.22 ([41]). A pairing & of size n is a collection of n couples

P ={G1. j1). - (n. jn)}
such that the following holds.

(D) {1,....20} = i1, j1s-eerin, jn)-
(2) For any k € {1,...,n}, the points p;, and pj;, are positive and negative,

respectively, as intersection points of oriented curves dS and y on M.

Given a pairing P of size n, and assuming that g(7) is large enough, we can
extend S to a properly embedded surface in M as follows. Let oy, . . ., «;, be pairwise
disjoint properly embedded arcs on 7" such that the following holds.

(1) The arcs «y, ..., o, represent linearly independent homology classes in
H,(T,dT).

(2) Forany k € {1,...,n}, we have do; = {pi,, pj, }-

Given such o, ..., ay, take
Sp:=SU[-1,1]x (a; U---Uay).

Then S, # 1s a properly embedded surface inside M.
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Definition 2.23. A pairing & is called balanced if S N Ry and Sp N R_ have the
same number of components.

For any balanced pairing J, we can pick an orientation preserving diffeomorph-

ism h: Ry — R_ so that
h(SpNRy)=SpNR_.

Thus, we obtain a closed oriented surface S C Y in the closure (Y, R) induced by A.
Define
SH(M,y,S,i) := H(Y,([R]. [S2]). (2g(R) — 2, 2i)).

Theorem 2.24. Given an admissible surface S in a balanced sutured manifold (M, y),
the decomposition
SH(M.y) = HSH(M.y.S. i)
i€Z
is independent of all the choices made in the construction and hence is well defined.

Remark 2.25. As mentioned in the convention after Definition 2.17, when writing
SH, we actually mean SH® for some large and fixed integer g. This means that all
closures involved have the same genus g.

Proof of Theorem 2.24. The decomposition follows from Axioms (A1-1) and (A1-7).
This gives a Z-grading on SH(M, y). To show that this grading is well defined, we
need to show that it is independent of the following three types of choices:

(1) the choice of the balanced pairing J,
(2) the choice of arcs ay,. . .,a, with fixed endpoints,
(3) the choice of the diffeomorphism /.

In [41, Section 3.1], the grading has been shown to be independent of the choices
of type (2) and (3). The proof involves only Axioms (A1) and (A2) and hence can be
applied to our current setup. However, the original argument for choices of type (1)
in [41, Section 3.3] involves closures of different genus, which is beyond the scope
of our current paper as mentioned in Remark 2.14. Hence, we provide an alternative
proof here. For the moment, let us write the grading as

SH(M,y,S,%,i)

to emphasize that the grading a priori depends on the choice of the balanced pairing.
Theorem 2.24 then follows from the following proposition. ]

Proposition 2.26. Suppose P and P’ are two balanced pairings, then for any i € Z,
we have
SH(M,y,S,P.,i)=SH(M,y,S,P,i).
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To relate two different pairings, in [41], the author introduced the following oper-

ation.
Definition 2.27. Suppose & is a pairing of size n and oy, ..., «, are related arcs.
Suppose k,I € {1,...,n} are two indices so that the following holds.

(1) The arcs {1} x o, and {1} x «;, belong to different components of §g’ NRy.

(2) The arcs {—1} x o, and {—1} x «;, belong to different components of
§g> NR_.

Then we can construct another pairing
P = (P\ik. ji) G jo)}) UGk, o). Gr. i)}
The operation of replacing & by &’ is called a cut-and-glue operation.

Theorem 2.28 ([27]). Balanced pairings always exist. Moreover, any two balanced
pairings are related by a finite sequence of cut-and-glue operations and their inverses.

Lemma 2.29. Suppose P and P’ are two balanced pairings that are related by a
cut-and-glue operation, then for any i € 7, we have

SH(M,y,S.P.,i)=SH(M,y,S,P.i).

Proof. Suppose k and [ are the indices involved in the operation. From the first part
of the proof of Theorem 2.24, we can freely make choices of type (2) and (3). Hence,
we can assume that there is a disk D C int(7") so that o and ¢; intersects D in two
arcs as depicted in Figure 2. Suppose

Dy={1})xDCRy and D_={-1}xD C R_.

We can choose an orientation preserving diffeomorphism #: E+ = R_ such that
h(Sp NRy)=SpNR_ and h(Dy)= D_.

Let (Y, R) be the corresponding closure of (M, y) and Sp be the closed surface
defining the grading SH(M, y, S, P).Let B = ax N D and B; = oy N D. Ttis straight-
forward to check that if we remove the two arcs By and 8; from D C T, and glue back
two new arcs ;{ and ﬂ; as shown in the middle subfigure of Figure 2, then we obtain
two new properly embedded arcs oz,’C and a; on T so that

doy. = {pi,.pj,} and da; ={pi,. pj. }-

Hence, we change from & to &#’. Inside Y, if we remove S! x (B U B;) C S x D C
Y and glue back S! x (B, UB) C S! x D, then we obtain the surface Sp: C Y that
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D D D x [0, 1]

L

Figure 2. The disk D, the arcs Bk, B;. B}, B;, and the surface U.

gives rise to the grading SH(M, y, S, $’). The lemma then follows from the fact

[Sp] = [Sp/] € Ha(Y). (24)

The equality (2.4) can be proved by constructing an explicit cobordism in ¥ x
[0,1] from Sp C Y x {0} to Sps C Y x {1}: in the product (Y x [0, 1], Sp x [0, 1]),
Wwe can remove

SUx (B1UBy) x[0,1]Cc S'xDx[0,1]CY x]0,1]

and glue back S' x U C D x [0, 1], where U C D x [0, 1] is the surface shown in the
right subfigure of Figure 2. ]

Proof of Proposition 2.26. It follows from Theorem 2.28 and Lemma 2.29. ]

Having constructed the grading, the rest of the arguments in [41, Section 3.3] can
be applied to our current setup verbatim. Hence, we have the following.

Proposition 2.30 ([40, 41]). Suppose (M, y) is a balanced sutured manifold and
S C (M, y) is an admissible surface. Then there is a Z-grading on SH(M, y) induced
by S, which we write as

i€Z
This decomposition satisfies the following properties.
(1) Suppose n = %|E)S Nyl If|i| > %(n — x(S)), then SH(M, vy, S,i) = 0.

(2) Suppose S is a product disk, i.e., S = D? and |0S Ny| = 2. Let (M',y’) be
the balanced sutured manifold under the sutured manifold decomposition

(M.y) > (M)
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in the sense of Gabai [14] (this is called product decomposition in [22, Defin-
ition 9.11]). Then we have

SH(M, y,S,0) = SH(M',y").
(3) Foranyi € 7, we have
SH(M,y,S,i) =SH(M, y,—S,—i).
(4) Foranyi € 7, we have
SH(M,—y,S.i) = SH(M,y, S, —i).
(5) Foranyi € 7, we have
SH(—M,y,S,i) =~ Homp(SH(M, y, S, —i),F).

Proof. (1) comes from the adjunction inequality in (A1-4). (2) follows from discus-
sion in [4, Section 4.2] (see also [30, Section 6]). Note that decomposing along such a
disk is the inverse operation of attaching a product 1-handle, and the disk is precisely
the co-core of the product 1-handle. (3) is straightforward from the definition. (4) is
from Axiom (A1-3). (5) is from the pairing (cf. [40]):

(-,):SH(M,y) x SH(—M,y) - F. [

Remark 2.31. We do not state a general surface decomposition theorem in Propos-
ition 2.30 (2) because the proof of the general theorem in [30, Section 6] involves
closures of different genera. Indeed, proofs in Section 4 of the current paper only
involve the decomposition theorem for a product disk.

Though not used in this paper, it is worth mentioning here that the general decom-
position theorem is still valid when we consider admissible surfaces and also take the
genus of the closures into account. Suppose S C (M, y) is an admissible surface and
let SH® denote the formal sutured Floer homology obtaining from closures of genus
g. Suppose (M',y’) is obtained from (M, y) by decomposing along S. Then for large
enough g, we have

1 1 /
SH (M.y.S.21S Nyl = 51(9)) = SHE ().
where ¢’ = g + %|S Nny|— % x(S). The argument in [30, Section 6] applies verbatim
to prove the above isomorphism.

Definition 2.32 ([22]). A sutured manifold (M, y) is called taut if M is irreducible
and R4 (y) and R_(y) are both incompressible and Thurston norm-minimizing in the
homology class that they represent in Hy (M, y).
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Proposition 2.33. Suppose (M, y) is a balanced sutured manifold so that M is irre-
ducible. If (M, y) is not taut, then SH(M,y) = 0.

Proof. Tt follows from the construction and the adjunction inequality. |

Remark 2.34. Though not needed in this paper, using the arguments in the proof of
[23, Theorem 1.4] and Remark 2.31, we could also show that an irreducible balanced
sutured manifold (M, y) is taut if and only if SH(M, y) # 0.

Definition 2.35. Suppose (M, y) is a balanced sutured manifold. It is called a homo-
logy product if Hi(M, R4+ (y)) = 0 and H; (M, R_(y)) = 0. It is called a product
sutured manifold if

M,y) = ([-1,1] x £,{0} x 0%),

where X is a compact surface with boundary.

Definition 2.36 ([22]). A balanced sutured manifold (M, y) is a product sutured man-
ifold if
(M,y) = ([-1,1] x ,{0} x 0%),

where X is a compact surface with boundary.

Proposition 2.37. Suppose (M, y) is a product sutured manifold. Then
SH(M,y) = F.
Proof. Tt follows from the construction and Axiom (A1-5). ]

If S C (M, y) is not admissible, then we can perform an isotopy on S to make it
admissible.

Definition 2.38. Suppose (M, y) is a balanced sutured manifold, and S is a properly
embedded surface. A stabilization of S is a surface S’ obtained from S by isotopy in
the following sense. This isotopy creates a new pair of intersection points:

38" Ny = (@S Ny)U{ps, p-}.

We require that there are arcs @« C S’ and 8 C y, oriented in the same way as 95’
and y, respectively, and the following holds.

(1) da =3B = {p+.p-}.
(2) « and B cobound a disk D with int(D) N (y U dS’) = @.
The stabilization is called negative if dD is the union of & and § as an oriented curve.

It is called positive if dD = (—a) U B. See Figure 3. We denote by S*¥ the surface
obtained from S by performing k positive or negative stabilizations, respectively.
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Figure 3. The positive and negative stabilizations of S

Remark 2.39. The definition of stabilizations of a surface depends on the orientations
of the suture and the surface. If we reverse the orientation of the suture or the surface,
then positive and negative stabilizations switch between each other.

One can also relate the gradings associated to different stabilizations of a fixed
surface. The proof for SHM and SHI in [41,66] can be adapted to our setup as well.

Theorem 2.40 ([41, Proposition 4.3] and [66, Proposition 4.17]). Suppose (M, y) is
a balanced sutured manifold and S is a properly embedded surface in M that inter-
sects y transversely. Suppose all the stabilizations mentioned below are performed
on a distinguished boundary component of S. Then, for any p,k,l € 7 such that the
stabilized surfaces S? and S? 2k gre both admissible, we have

SH(M,y,S?,1) = SH(M, y, SPT2* 1 + k).

Note that S? is a stabilization of S as introduced in Definition 2.38, and, in particular,
S0 =3¢.

Remark 2.41. The original form of Theorem 2.40 in [41] was stated for a Seifert
surface in the case of a knot complement. However, it is straightforward to generalize
the proof to the case of a general admissible surface in a general balanced sutured
manifold, given the condition that the decompositions along S and —S are both taut.
This extra condition on taut decompositions was then dropped due to the work in [66].

If we have multiple admissible surfaces, then they together induce a multi-grading.
This is proved for SHM and SHI by Ghosh and the first author [17]. The proof can be
adapted to our case without essential changes.
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Theorem 2.42 ([17, Proposition 1.14]). Suppose (M, y) is a balanced sutured mani-
foldand S, ..., S, are admissible surfaces in (M, y). Then there exists a 7" -grading
on SH(M, y) induced by S, ..., Sy, which we write as

SH(M.y) = @ SH(M. y.(S1.....Sp). (i1. .- .. in)).

(i1 seesin)EZ"

Theorem 2.43 ([17, Theorem 1.12]). Suppose (M, y) is a balanced sutured manifold
and a € Hy(M, OM) is a nontrivial homology class. Suppose S1 and S, are two
admissible surfaces in (M, y) such that

[S1] = [S2] = @ € Ha(M, OM).
Then, there exists a constant C so that
SH(M,y,S1,]) =SH(M,y,S>,l + C).

Based on the relative Z,-grading from Remark 2.18 and the Z”-grading from
Theorem 2.42, we can define graded Euler characteristic of formal sutured homology.

Definition 2.44. Suppose (M, y) is a balanced sutured manifold and Sy, ..., S, are
admissible surfaces in (M, y) such that [S1], ..., [Sx] generate Hy(M, 0M). Fori =
1,....n,let p; € H =H;(M)/ Tors be the class satisfying p; - S; = §; ;. Define the
graded Euler characteristic of SH(M, y) to be

X (SH(M, y))
= X(SHM.y.(S1.....Sp).(i1....in))) - () - i) € Z[H]/ & H.

@i15eesin)EZ"

Remark 2.45. It can be shown by Theorem 2.43 that the definition of graded Euler
characteristic is independent of the choices of Sy, ..., S, if we regard it as an element
inZ[H]/ + H.If the admissible surfaces S1,. .., S, and a particular closure of (M, y)
is fixed, then the ambiguity of = H can be removed.

From Theorem 2.19, Proposition 2.20, and Axiom (A1-7), the following proposi-
tion is straightforward.

Proposition 2.46. Suppose (M, y) is a balanced sutured manifold and S C (M, y) is
an admissible surface. Suppose the disk as in Figure 1, where we perform the bypass
change, is disjoint from dS. Let y» and y3 be the resulting two sutures. Then all the
maps in the bypass exact triangle (2.3) are grading preserving, i.e., for anyi € Z, we
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have an exact triangle
. Y. .
SH(—M, —y;,S8,i) —————— SH(-M,—y,, S,i)

¥3.i Y2
SH(—M, —y3,S,1)

where Yy ; are the restriction of Yy in (2.3).

3. Heegaard Floer homology and the graph TQFT

In this section, we discuss the modification of Heegaard Floer theory to make it suit-
able to formal sutured homology.

3.1. Heegaard Floer homology for multi-pointed 3-manifolds

In this section and Section 3.2, we provide an overview of the graph TQFT for Hee-
gaard Floer theory, constructed by Zemke [69] (see also [20, 70]), and list some
properties which are relevant to proofs in Section 3.3 about Floer’s excision theorem.

Definition 3.1. A multi-pointed 3-manifold is a pair (Y, w) consisting of a closed,
oriented 3-manifold Y (not necessarily connected), together with a finite collection of
basepoints w C Y, such that each component of ¥ contains at least one basepoint.
Given two multi-pointed 3-manifolds (Y7, wy) and (Y3, wz), a ribbon graph
cobordism from (Y1, wy) to (Y2, wp) is a pair (W, I') satisfying the following con-
ditions:
(1) W is a cobordism from Y; to Y»;

(2) I' is anembedded graph in W such that I' N Y; = w; fori = 1,2. Furthermore,
each point of w; has valence 1 in I';

(3) T has finitely many edges and vertices, and no vertices of valence 0;
(4) the embedding of I" is smooth on each edge;
(5) T is decorated with a formal ribbon structure, i.e., a formal choice of cyclic

ordering of the edges adjacent to each vertex.

Definition 3.2. A ribbon graph cobordism (W, T") from (Y71, wy) to (Y2, w») is called
arestricted graph cobordism if W is obtained from Y; x I by attaching 4-dimensional
1-, 2-, and 3-handles away from all basepoints and I' = w; x [ is the induced graph
in W (so the cyclic ordering is unique and |w;| = |wz|).
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Definition 3.3 ([69, Definition 4.1]). Suppose (Y, w) is a connected multi-pointed
3-manifold. A multi-pointed Heegaard diagram # = (X, a, B, w) for (Y,w) is a
tuple satisfying the following conditions.

(1) X is a closed, oriented surface, embedded in Y, such that w C X\ (a U ).
Furthermore, X splits ¥ into two handlebodies U, and Ug, oriented so that
Y =0Uy = —Ug.

2) @ = {a1,...,0,} is a collection of n = g(X¥) + |w| — 1 pairwise disjoint
simple closed curves on ¥, bounding pairwise disjoint compressing disks in
U,. Each component of ¥\« is planar and contains a single basepoint.

(3) B ={B1,....Bn} is a collection of pairwise disjoint, simple, closed curves
on ¥ bounding pairwise disjoint compressing disks in Ug. Each component
of ¥\ B is planar and contains a single basepoint.

Suppose w = {wy, ..., wy,}. Let the polynomial ring associated to w be
FQ[UW] = Fz[le ey me].

Let F2[Uy, Uy '] be the ring obtained by formally inverting each of the variables.
Ifk = (k1,...,kn) is an m-tuple, let

Up = Ugl - Uk,
For simplicity, we will also write U; for Uy, .

Suppose K = (X, o, B, w) is a multi-pointed Heegaard diagram of a connected
multi-pointed 3-manifold (Y, w). Suppose n = g(X) + |w| — 1. Consider two tori

To:=a; x---xa, and Tg:=pyx---xpy

in the symmetric product

Sym”" ¥ := (ﬁ Z)/S,,.

i=1
The chain complex CF™ (#) is a free F,[Uy]-module generated by intersection
points x € Ty, N Tg. Define
CF®(H#) := CF (#) ®F,vy] F2[Uw, Uy']
and
CF'(H#) := CF®(H#)/ CF (¥).

To construct a differential on CF™ (), suppose H# satisfies some extra admiss-
ibility conditions if b1 (Y) > 0 (cf. [69, Section 4.7]). Let (Jg)se[o,1] be an auxiliary
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path of almost complex structures on Sym” ¥ and let 75 (X, y) be the set of homology
classes of Whitney disks connecting intersection points x and y (cf. [54, Section 3.4]).
For ¢ € m2(x,Yy), let M, (¢) be the moduli space of Js-holomorphic maps u: [0, 1] x
R — Sym” X which represent ¢. The moduli space M j, (¢) has a natural action of R,
corresponding to reparametrization of the source. We write

My, ($) i= My, (¥)/R.

For ¢ € my(x,y), let u(¢) be the expected dimension of M s, (¢) for generic Jg
and let ny, (¢) be the algebraic intersection number of {w;} x Sym”! ¥ and any
representative of ¢. Define

nw(P) 1= (nw,(9). . ... N, (9)).
For a generic path Jg, define the differential on CF~ (J#) by

0,x)=>" > #My (HUID .y,
yETaﬂTﬁ pemr(X,y)
u(@)=1
extended linearly over F,[Uy]. The differential 07, can be extended on CF*° () and
CF* (¥#) by tensoring with the identity map.

Lemma 3.4 ([54, Lemma 4.3]). For a generic path Js, the map 95, on CF°(¥),
where o € {00, +, —}, satisfies

a7

s

ody, =0.

For a disconnected multi-pointed 3-manifold (Y, w) = (Y1, w;) U (Y2, W), where
Y; is connected for i = 1,2, suppose #; is an admissible multi-pointed Heegaard
diagram of Y; and suppose Jy; are corresponding generic paths of almost complex
structures. For o € {oco, 4+, —}, let the chain complex associated to (¥, w) be

(CF°(H1 U JH),0,) := (CF°(Hy), 9J5,) ®F, (CF°(H,), 9J5,)- 3.1

Remark 3.5. In Zemke’s original construction [69, Section 4.3], one should choose
colors for basepoints and graphs to achieve the functoriality of the TQFT. For
basepoints with the same color, the corresponding U -variables should be the same.
In above notations, we implicitly choose different colors for all basepoints so that the
U -variable for each basepoint is different. This is to obtain the following relation on
the homology level

H(CF° (1 U J3),04,) = H(CF°(J€1),81S1) ®F, H(CF°(J€1),81S2). (3.2)

Note that in the construction of [20, 70], the colors of all basepoints are the same and
all U -variables are identified as U, so (3.1) should be a tensor product over [F5[U]
rather than [F, and (3.2) does not hold in general.
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Remark 3.6. Given a finite set of multi-pointed 3-manifolds and ribbon graph cobor-
disms, the chain complex CF™ (0) is set to be F;[Uy ], where Uy, contains all U -vari-
ables associated to basepoints in the set. For any multi-pointed 3-manifold (Y, w’)
with w/ C w that is in the given set, the actual chain complex in the TQFT should be

CF (Y, W) ®r, F2[Uw\w]-

In the statements of results in this paper, we always have w’ = w for any multi-
pointed 3-manifold (Y, w’). However, in the proof of those results (e.g., Lemma 3.35
and Theorem 3.30), we may have multi-pointed 3-manifold (¥, w’) such that w’ # w;
see Remark 3.36. Also, in the proof, the colors of basepoints may be different.

The chain homotopy type of (CF°(#), d;,) is independent of the choices of the
admissible diagram # and the generic path Js. Indeed, we have the following theorem
about naturality.

Theorem 3.7 ([69, Proposition 4.6], see also [25, 51]). Suppose that (Y, w) is a
multi-pointed 3-manifold. To each (admissible) pairs (¥, J) and (¥', J'), there is
a well-defined map

Wige,1y— 3,07y (CF(H),d5) — (CF(H'), ),

which is well defined up to F,[Uy]-equivariant chain homotopy. Furthermore, the
following holds.
D) If(H, J), (H',J") and (H'p, J'p) are three pairs, then there is a chain
homotopy equivalence

Ve, 1) p,07p) = Vg, p,d'p) © Y(3,0) (3,07
(2) Wiz, 1) —e,0) = idcr(3),9,) -
Moreover, similar results hold for CF*™ and CF™.

Convention. If it is not mentioned, chain homotopy means I, [Uy |-equivariant chain
homotopy.

Since all chain complexes discussed above can be decomposed into spin® struc-
tures (cf. [51, Section 2.6]), we have the following definition.

Definition 3.8. Suppose (Y, w) is a multi-pointed 3-manifold and s € Spin®(Y"). For
o € {00, +, —}, define CF°(Y, w, ) to be the transitive system of chain complexes
with canonical maps from Theorem 3.7, with respect to s, and define HF°(Y, w, s) to
be the induced transitive system of homology groups.

For later use, we also define the completions of the chain complexes.
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Definition 3.9. Let F,[[Uy]] be the ring of formal power series of Uy. For o €
{00, +, —}, define

CF°(Y,w,s) := CF°(Y.W,$) ®F,[vy] F2[[Uw]l.
Let HF°(Y, w, s) be the induced homology groups.
Convention. When omitting the module structure, we have
CFt(Y,w,s) = CET (Y, w,s).
Hence, we do not distinguish them.
The advantage of the completions is that we have the following proposition.

Proposition 3.10 ([47, Section 2], see also [52, Lemma 2.3]). If (Y, w) is a multi-
pointed 3-manifold and s € Spin°(Y') on each component is nontorsion, then

HF®(Y,w,s) = 0.

Then the boundary map in the following long exact sequence induces a canon-
ical isomorphism between HF~ (Y, w, s) and HF (Y, w, ) for any nontorsion spin®
structure .

Proposition 3.11. From the short exact sequence
0 — CF (Y.w,s) - CF®(Y,w,s) - CF"(Y,w,s) — 0,
we have a long exact sequence
. >HF (Y, w,s) > HF®(Y,w,s) - HFT (Y, w,s) — --- .
We also have a long exact sequence for HF~, HF®, and HF .

Definition 3.12. Suppose (Y, w) is a multi-pointed 3-manifold and s € Spin°(Y) is
a nontorsion spin® structure. We write

HF(Y,w,s) = HF.q(Y,w,s) := HF" (Y, w,s) @ HF (Y, w, s).

3.2. Cobordism maps for restricted graph cobordisms

Theorem 3.13 ([69, Theorem A]). Suppose (W, T"): (Yo, wo) — (Y1, W1) is a ribbon
graph cobordism and s € Spin®(W). Then there are two chain maps

F;},F,ga FI/IB;’F,Q:CF_(YO?W()ﬂ 5|Y()) - CF_(YI?Wla g|Y])7

which are diffeomorphism invariants of (W, T"), up to F,[Uyw]-equivariant chain homo-
topy.
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Proposition 3.14 ([69, Theorem C]). Suppose that (W, T') is a ribbon graph cobord-
ism which decomposes as a composition (W,T") = (W, T2) U (W1, T'). If 31 and s,
are spin® structures on Wy and Wa, respectively, then

A A N A
FW2,F2,92 ° FWl,Flﬁl - Z FW,T,S'

s€Spin¢ (W)
slw, =22
slw, =s1

A similar relation holds for FW'; s

Since we will only consider restricted graph cobordisms, the map F Vlé,l", o 1s chain
homotopic to F; W‘@,F, - Hence, we write CF (W, T, s) for the chain map and
HF~ (W, T, s) for the induced map on the homology group. If I" and s are spe-
cified, we write CF~ (W) and HF~ (W) for simplicity, respectively. The chain maps on
CF*,CF",CF~, CF* are obtained by tensoring with the identity maps, respectively.
We use similar notations for these chain maps and the induced maps on homology
groups. All maps are called cobordism maps.

For CF, the cobordism map is defined by the composition of the following maps.

* For 4-dimensional 1-, 2-, and 3-handle attachments away from the basepoints, we
use the maps defined by Ozsvath and Szabd [53].

* For 4-dimensional 0- and 4-handle attachments, or equivalently adding and remov-
ing a copy of S3 with a single basepoint, respectively, we use the maps defined by
the canonical isomorphism from the tensor product with CF~(S3, wg) = F5[Up].

* For a ribbon graph cobordism (Y x [0, 1], I'), we project the graph into Y and use
the graph action map defined in [69, Section 7].

Remark 3.15. For 4-dimensional 1-, 2-, and 3-handle attachments, Ozsvath and
Szabd’s original construction was for connected cobordisms between connected
3-manifolds. Zemke [69, Section 8] extended the construction to cobordisms between
possibly disconnected 3-manifolds. For 4-dimensional 0- and 4-handle attachments,
the isomorphism is indeed

CF (Y US>, w U {wp}) = CF (Y,w) ®F, CF(S?, w)
= CF (Y, w) ®r, F2[Uo].

The graph action map is obtained by the composition of maps associated to element-
ary graphs. The construction involves free-stabilization maps S'my, [69, Section 6]
and relative homology maps Aj [69, Section 5], where S’m,, correspond to adding
or removing a basepoint w and A correspond to a path A between two basepoints.
When considering restricted graph cobordisms, we only need maps associated to 1-,
2-, 3-handle attachments.



Instanton Floer homology, sutures, and Euler characteristics 237

Figure 4. Free-stabilization in a small disk D.

Definition 3.16. Suppose # = (X, «, B, w) is a multi-pointed Heegaard diagram for
a multi-pointed 3-manifold (¥, w). Let D C X\(«x U B) be a small disk containing
a new basepoint wo € X\(x U B). Let o and By be two simple closed curves on
¥ bounding a disk containing wo and |ag N Bo| = 2. Suppose O and 6~ are the
higher and the lower graded intersection points, respectively. See Figure 4. Consider
the Heegaard diagram #' = (X, o U {ao}, B U {Bo}, w U {wo}), where ag and B¢ are
in the region of a basepoint z € w.

For appropriately chosen almost complex structures, define the free-stabilization
maps S'my, by

Sufo(x) =xx0T,

Spo(xx07)=x and S, (xx 6ty =o0.

Remark 3.17. If we collapse dD to a point pg, we obtain a doubly-pointed diagram
on S? with two curves. Hence, #’ can be considered as the connected sum of #
and (S2, ag, Bo. {wo, po}) at the basepoint z in J and the basepoint pg (cf. [54,
Section 6.1]).

Proposition 3.18 ([69, Section 6 and Lemma 8.13]). The maps S'my,, in Definition
3.16 determine well-defined chain maps on the level of transitive systems of chain
complexes

S+ CF (Y,w) = CF(Y,w U {wp)),

wo*
S  CF (Y, w U{wo}) — CF (Y, w).
Moreover, they have the following properties.

(1) The maps S'my, commute with maps associated to 1-, 2-, and 3-handle
attachments.

(2) Foroy,05 € {+,—}, we have Sy Si2 =~ Su2Su) .
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sz

Figure 5. Ribbon graph cobordisms related to free-stabilization maps.

Remark 3.19. The free-stabilization maps can be regarded as ribbon graph cobord-
isms with W =Y x [0, 1]. The graphs are shown in Figure 5. Alternatively, we can
regard them as compositions of maps associated to handle attachments. The map S 5
is obtained by first attaching a 0-handle with an arc whose one endpoint is on the
boundary, and the other is in the interior, and then attaching a 1-handle away from
basepoints; see the left of Figure 5. The map S, is obtained by first attaching a
3-handle and then a 4-handle with an arc similarly; see the right of Figure 5.

Convention. All illustrations of cobordisms are from top to bottom.

We can calculate the effect of free-stabilization maps on the homology explicitly.

Proposition 3.20 ([54, Proposition 6.5]). Consider the construction given in Defini-
tion 3.16. For suitable choices of almost complex structures, the chain complex
CE (H#') is identified with the mapping cone of the following map

CF~ () ®r, Fa[Up](67) ——2 CF~(J¢) @, F2[Uo](67).

where Uy corresponds to the basepoint in the original diagram J for the connected
sum construction in Remark 3.17.

Corollary 3.21. If Uy # U; in Proposition 3.20, i.e., the colors of corresponding
basepoints are different (cf. Remark 3.5), then the map Sufo induces isomorphisms on
HF° and HF® for o € {c0, +, —}, and the map S, , induces zero maps on all versions
of Heegaard Floer homology.
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Proof. The arguments for o € {co, —} follows directly from Definition 3.16, Pro-
position 3.20, and definitions of Heegaard Floer homology groups. For o = +, note
that the free-stabilization maps are compatible with the long exact sequence in Pro-
position 3.11. Hence, the behaviors of maps for o € {oo, —} imply the behavior for
o = +. | |

The following proposition implies the choice of the basepoints is not important.

Proposition 3.22 ([69, Corollary 14.19 and Corollary F]). Suppose (Y, w) is a multi-
pointed 3-manifold and wi € w. Then the w1 (Y, w1) action on HF~ (Y, w) is always
the identity map.

Suppose (Y1, w1) and (Ya, Wy) are two multi-pointed 3-manifolds with |wy| =
|wa|. Suppose W is a cobordism from Y1 to Y, such that the boundary of each
component of W consists one component of —Y1 and one component of Y,. Sup-
pose I' C W is a collection of paths connecting wy and w,. Then the cobordism
map HE~ (W, T") is independent of the choice of I'. Moreover, if W =Y X I, then
HF~ (W, T') is an isomorphism.

Similar results also hold for HF*®, HFt, HF, and HF™,

From Corollary 3.21 and Proposition 3.22, we can define a transitive system of
groups based on different choices of basepoints.

Definition 3.23. Suppose Y is a closed, oriented 3-manifold and w;, w, C Y are two
collections of basepoints in Y. Let w] = w;\w5 and w, = w,\w;. For o € {c0, +,—},
define transition maps associated to (wy, wz) as

Vo w, = H(SJ;)_I o l_[Su")r on HF° and HF®
WEW] wew)

where the products mean compositions. The order of maps is not important by the
following lemma.

Lemma 3.24. Suppose Y is a closed, oriented 3-manifold and wi, wo, w3 C Y are
three collections of basepoints in Y. Suppose w is a basepoint in Y that is not in w;
fori = 1,2. Then the following holds for transition maps:

(1) ‘Il‘v’vl__)wj_ is well defined fori, j €{1,2,3}, i.e., the composition is independent
of the order of maps;

2) lllsvi_,wj is an isomorphism for i, j € {1,2,3};

(3) Yy, w, =1idfori =1,2,3;

) Vo, ows ° Yo ow, = Ya owss

5) \I’;’vlu{w}_)ww{w} oSH =850 Ve Sy

(6) Wy sw, 08y =Sy 0 \D:vlu{w}—mzu{w}'
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Proof. (1), (4), (5), and (6) follow from Proposition 3.18 (2). Note that maps in (5)
are both isomorphisms and the maps in (6) are both zero maps. (3) is trivial from the
definition. (2) follows from Corollary 3.21. ]

Lemma 3.25. Suppose Y, and Y, are closed, oriented 3-manifolds and wy,w, C Y1,
w3, Wq C Y» are collections of basepoints. Suppose W is a cobordism from Y to Y»
that is obtained from Y1 x I by attaching 4-dimensional 1-, 2-, 3-handles away from
all basepoints. Let 'y = wy X I be the induced graph in W and suppose w3 is the
image of wy x {1}. The cobordism W can also be obtained from —Y, x I by attaching
handles away from basepoints and let I'y = w4 X I. Suppose the image of W4 is W.
Then we have a commutative diagram

HF—(W.,T'1)
—_—

HF_(Yl,Wl) HF_(YZs W3)
l‘l/;vl —>Wp l\pv;3—>W4
HF (Y, w>) M), HF ™ (Y2, wy)

Similar commutative diagrams hold for HF~ and HF .
Proof. This follows from Proposition 3.18 (1). ]

Theorem 3.26. Suppose Y is a closed, oriented 3-manifold. Then groups HF~ (Y, w)

for all w C Y and transition maps V for all wi, wy C Y form a transitive

W] —>W
system, which is denoted by HF~ (Y). M(;remfen suppose (W, T') is a restricted graph
cobordism from (Y1, wy) to (Y2, wWp). Then HE~ (W, T') induces a well-defined map
Sfrom HF™ (Y1) to HF™ (Y3), which is independent of the choice of the restricted graph
I' and denoted by HF~ (W).

Similar arguments hold for infinity and plus versions of Heegaard Floer homology

groups.

Proof. The well-definedness of HF~(Y') and HF~ (W, I') follows from Lemma 3.24
and Lemma 3.25. Note that the restricted graph cobordism is a composition of maps
associated to 1-, 2-, 3-handle attachments. Then the independence of T" follows from
the functoriality of the map associated to a ribbon graph cobordism. The proofs for
infinity and plus versions of Heegaard Floer homology groups are similar. ]

Remark 3.27. Groups and maps in Theorem 3.26 also split into spin€ structures. Sup-
pose s € Spin® (W) is a nontorsion spin® structure which restricts to nontorsion spin®
structure s; on Y; for i = 1,2. Then HF~(Y;, s;) and HF" (Y, ;) are canonically
identified by the boundary map in Proposition 3.11. Moreover, the maps HF~ (W, )
and HF (W, s) are the same under this identification. We write the map as HF(W, s).
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<

Figure 6. Construction of ¥ .

3.3. Floer’s excision theorem

Note that the proofs of Theorem 2.13 and Theorem 2.24 (cf. [3, 41]) both involve
Floer’s excision theorem in an essential way. In this section, we follow Kronheimer
and Mrowka’s idea in [30, Section 3] to prove an excision theorem for Heegaard
Floer theory. The proof in [30, Section 3] depends essentially on the TQFT properties
and Axiom (A1), so it works for a general TQFT satisfying Axiom (A1). Though
for Heegaard Floer theory, we need to modify the proof to fit the settings of multi-
basepoints 3-manifolds and ribbon graph cobordisms.

Let Y be a closed, oriented 3-manifold, of either one or two components. In the
latter case, let Y7 and Y, be two components of Y. Let ¥; and 3, be two closed,
connected, oriented surfaces in Y with g(X1) = g(X5). If Y has two components,
suppose X; is a non-separating surface in ¥; fori = 1,2. If Y is connected, suppose
¥, and X, represent independent homology classes. In either case, let F = X; U 2.
Let / be an orientation-preserving diffeomorphism from ¥; to ¥».

We construct a new manifold ¥ as follows. Let ¥’ be obtained from ¥ by cutting
along ¥. Then

Y =S U(-Z)UZ U (=X)).

If Y has two components, then we have Y’ = Y| U Y, where Y/ is obtained from Y;
by cutting along ¥; fori = 1, 2. Let Y be obtained from Y’ by gluing the boundary
component X to the boundary component —%, and gluing ¥, to —X;, using the dif-
feomorphism of / in both cases; see Figure 6 for the case that Y has two components.

In either case, Y is connected. Let ii be the image of X; in Y fori = 1,2 and let
F=%UZ%Z,.
Definition 3.28. Suppose Y is a closed, oriented 3-manifold and F C Y is a closed,
oriented surface. Let F; fori = 1,...,m be the components of F. Suppose further
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that g(F;) > 2 and any component of ¥ contains at least one component of F. Let
Spin(Y | F) denote the set of spin® structures s € Spin®(Y') satisfying

(c1(s), F;) = 2g(F;) —2 for any F;. (3.3)

Define
HF(Y|F) := (D HF(Y.s).
s€Spin€ (Y |F)

Suppose (W, I') is a restricted graph cobordism and G C W is a closed, oriented
surface. Let G; fori = 1,...,n be components of G. Suppose further that g(G;) > 2
and any component of W contains at least one component of G. Let Spin°(W|G)
denote the set of spin® structures s € Spin (W) satisfying similar conditions in (3.3)
by replacing F; by G;. Define

HF~(W.T|G) := Y "HF (W.T.s).
s€Spin¢ (W|G)

Let HFT (W, T'|G), HF~ (W, T'|G) and HF(W, I'|G) be defined similarly. We also
denote the corresponding map on the chain level by replacing HF by CF.

Remark 3.29. All spin¢ structures in Spin®(Y | F) are nontorsion, so HF(Y, s) is well
defined.

The following is the main theorem of this section.

Theorem 3.30 (Floer’s excision theorem). Consider Y and Y constructed as above.
If g(21) = g(X2) = 2, then there is an isomorphism

HFE(Y |F) =~ HF(Y |F).

Moreover, this isomorphism and its inverse are induced by restricted graph cobord-
isms.

Before proving the main theorem, we introduce some lemmas analogous to results
in monopole theory (cf. [30, Lemma 2.2, Proposition 2.5 and Lemma 4.7])

Lemma 3.31 ([39, Theorem 16 and Corollary 17], see also [52, Theorem 5.2]). Let
Y — S be a fibred 3-manifold whose fibre F is a closed, connected, oriented surface
with g = g(F) > 2. Then CF™ (Y |F) is chain homotopic to the chain complex

U
0 — F2([Uo]}{x) — F2[[Vol}{y) — 0. (34
Moreover, there is a unique s € Spin®(Y |R) so that HF(Y, s¢) # 0 and we have

HE(Y |F) = HE(Y, 50) = F,.
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wj W3

Figure 7. Nontrivial cobordism map from composition.

Remark 3.32. Indeed, for Y in Lemma 3.31, we can construct a weakly admissible
Heegaard diagram J for the singly-pointed 3-manifold (Y, w) so that CF™ (#, s¢) is
generated by 8¢ generators X1, ...,X4g,¥1,...,Y4g and

0x; = Upyr, 0x; =y;, dyy =0 forj>1k=>1.

The reason to use CF~ rather than CF™ is because the computation of CF™ is based
on strongly admissible Heegaard diagram.

Lemma 3.33. Suppose Y = X x S! suchthat ¥ = X x {1} C Y is a closed, connec-
ted, oriented surface with g(X) > 2. Suppose wo € S> and w € Y are basepoints. Let
W be obtained from ¥ x D? by removing a 4-ball, considered as a cobordism from
S3toY. LetT' C W be any path connecting wg to w. Then the map

HF~ (W, T|2): F»[[Uo]] = HF(S3, wo) — HE(Y, w|%) = F, (3.5)

is nonzero.

Proof. Suppose P is 2-dimensional pair of pants as shown in Figure 7. Consider
W’ = ¥ x P as a cobordism from Y; U Y, to Y3, where ¥; >~ Y fori = 1,2, 3.
Suppose w’ is another basepoint in Y. Let w; and w; be the images of w and w’ in ¥;
fori =1,2,3.Let " C W’ be a collection of two paths y; and y,, where y; connects
wj to wj and y, connects w; to w3.
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Let (Wy,Ty) = (Y1 x I, w’ x I) be the product cobordism. Suppose ¥; C Y; is
the image of ¥ C Y fori = 1,2, 3. Consider the composition of the cobordism maps
HF_(W/, F/|El UX, U 23) OHF_(Wl uw, I'yu r|21 U 22)2
HE(Y;, wirime|X1) ®p, HF(S?, wo) — HF(Y3, {ws, w3}|Z3).
After filling the S3 component by a 4-ball, or equivalently composing it with the

map associated to a 0-handle attachment, we obtain the free-stabilization map S ,j (cf.
Remark 3.19). By Corollary 3.21, the resulting map is an isomorphism

HE(Yy, wirime|Z,) = HF(Y3, {ws, w5}/ X3).
Since
HF (W, u W, I ul'|2; U X,) = HF (W, T1121) ®F, HF (W, ' 2,),
and HF ™ (W;|X) is the identity map, we know HF~ (W |X,) is nonzero. [

Corollary 3.34. On the chain level of (3.5), the cobordism map CF— (W, T'|X) sends
the generator of CF~(S3, wg) = F2[[Uo]] to the generator of second copy of F2[[Up]]
in (3.4).

Proof. The map in the statement is the only [ [Up]-equivariant chain map that induces
a nonzero map on the homology. ]

The proof of the following lemma is due to Ian Zemke.

Lemma 3.35. Let Y = X x S! and let Wy = Y x I be a cobordism from @ to Y Ui
(=Y). Let wy € Y, wp € (=Y), wirime, wirime € Wy and let Ty C W, consist of
two paths whose endpoints are w; and wl{ri me for i = 1,2, as shown in the left
subfigure of Figure 8. Let Wy = X x D? U (=X x D?) be another cobordism from
BtoY U(=Y) and let Ty C W, be obtained from two copies of the cobordism in
Lemma 3.33 associated to ¥ and —X by filling the S® components by 4-balls (cf.
Remark 3.19), as shown in the right subfigure of Figure 8. Then we have

CF~ (W, I'[Z U (=2))
~ CF~ (W, T2|Z U (=%)): CF~(8) — CF~ (Y U (=Y), {wy, w2}| U (=3)).

Proof. Set R = F,[[U1, U;]]. By Remark 3.5, we implicitly choose w; and w, to
have different colors and then

CF™ (Y U (=Y). {w1. wp}|S U (=X)) := CF (Y |S) ®p, CF (=Y | — %).
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Yo=0

Wl

. .Y2 ‘ ‘

s xSl _sxs! - Txs! —-oxS!
o (]

Figure 8. Ribbon graph cobordisms (W7, I'1) and (W», I'2).

Y3

By Remark 3.6, we have CF~ (J) = R. By TQFT property in [69], we have a canon-
ical chain isomorphism

CF (—Y,wy| — X) = CF (Y, w3|X)Y := Homg (CF~ (Y, w3|X), R).
Then by Lemma 3.31, we have

CF(Y U (=Y),{wi,w}|SU (=) ~ Rx @ yY) 2% R{x @ xV)
le lyz (3.6)
R(y ®y¥) —> R(y ®x")

where xV and yV are duals of x and y, respectively. By Corollary 3.34, we know
CF~ (W, 2| X U (—X)) sends the generator of CF™ (@) to y ® xV in (3.6).

By Proposition 3.14, we compute CF~ (W1, I'1|¥ U (—X)) by decomposing
(W1, T'1) into three parts (Wi, F{): (Yi—1,wi—1) = (Y;,w;) fori = 1,2, 3 as shown
in the middle subfigure of Figure 8. Note that (Yy, wo) = 0. Let F be the images of
YU (—X).

First, we compute CF~(W}!, '} | F). Since the two basepoints in w; have the same
color (also the same as w,), we have

CF (Y1, wi|F) ~ R(x @ y") -2 R(x @ x)
le le (3.7)
Ry ®yY) —2 R(y @ xY)

From Zemke’s calculation [70, Theorem 1.7], the cobordism map CF~ (W}, Fll |F)is
the canonical cotrace map, i.e., it sends the generator of CF~ (f) = R to x ® xV +

y ® yV. Note that the original calculation is for CF~ but it is easy to extend the result
to CF ™.
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Remark 3.36. Though we only have one color in wy, we use R rather than [, [[U;]]
in (3.7) to achieve the functoriality (cf. Remark 3.6). Thus, when applying Proposi-
tion 3.20 in the following computation, we do not need to add another U-variable.

Second, we compute CF~ (W2, T'?| F). Note that the left component of (W2, '7)
corresponds to the free-stabilization map S, , and the right component is just the iden-
tity map. By Proposition 3.20, the chain complex CF™ (Y;, w| F') is chain homotopic
to the mapping cone of

Rx®@yYV®0™) = Rx®xV®0™)

Jos Jos

RHY®@yVei) =3 Ryex¥eo)

Rx 2y’ ®60T) B Rix®x¥ 6%
U0 | lUZ (3.8)

Ry®yWeit) B Riyox ®6T)

where u @ v ® 6'm for u € {x,xV},y € {y, y"} represents (u X 6'm) ® v. Then
CF~ (W2, T}|F) sends any generatoru ® vtou ® v ® 61 in (3.8).

Third, we compute CF~ (W2, I’} | F). Note that the left component of (W}, T'})
corresponds to the free-stabilization map S,,, and the right component is just the
identity map. Also by Proposition 3.20, the chain complex CF~ (Y5, w, | F) is chain
homotopic to the mapping cone of

Rx W e0) L RxoxY @07

12 12
Ry o) L Ry exY®67)

Rix®y' @0t L Rx@xV ®60F)

LUy le le . (3.9)

Ry @y ®ot) L Ry @x¥ @07

Then CF~ (W2, T3?|F)sendsu ® v® 0~ tou ® vin (3.6) and sends u ® v ® 0 to
Oforu e {x,xV},y e{y,y"}.

To compute the composition, we need to find the explicit chain homotopy between
the above two mapping cones (3.8) and (3.9), which is calculated by Zemke [69,
Theorem 14.1]. Since we only care about the image of CF~ (), we only need to
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calculate the image of * map in [69, (14.3)] (from the target in (3.8) to the source
in (3.9))

! U:—=Uyy j j —>B\Uz—>Uy
W g o ( ZU:UUJ)/(ai+j+1)Uw,Uw/) o (WP (3.10)
i,j>0
for the element
A RxVRT+yyY et (3.11)

in (3.8). In (3.10), we have z € Y; for the connected sum construction in Remark 3.17,
w = wy, w = wy, Uy = Uy, Uy = Up and o', B’ being small isotopies of «, B,
respectively. The differential d; comes from

0= Uk, (3.12)
keN

where 0 is the differential in

CF™ (Y1, {z. wo}|Z U (-3) ~ R(x ® ") —2> R(x ® xV)
le le (3.13)
Ry ®yY) —2 R(y ® xV)

For amap f, the notation ( f)Y=~UY» means we replace U, by U, in the image of f
and the notation (f)y,, means tensoring f with the identity map in F5[U,,].

Since the element (3.11) has no U-power, the transition maps (lIla/_)a/)Z; U
and (\Ijoff*ﬂ/)%?’]‘v can be regarded as identity maps. By (3.12) and (3.13), we know
dr = 0 fork Zwl and d1 sends x ® x¥ to 0 and sends y ® y¥ to y ® x". Hence, the
* map (3.10) sends the element (3.11)to y ® x¥ ® 8~ in (3.9).

Thus, by composing three cobordism maps and up to chain homotopy, we show
that CF~(Wy, T'1 |2 U (—X)) also sends the generator of CF~(d) = R to y ® xV

in (3.6). .

Now, we start to prove the main theorem of this section. The basic idea is from
Kronheimer and Mrowka [30, Section 3.2], which originally came from Floer’s work
[11], where he dealt with the excision theorem in instanton theory for the genus one
case.

Proof of Theorem 3.30. We proceed in three steps.

Step 1. We construct a cobordism W from Y to Y and a cobordism W from Y to Y.
Recall that Y’ is obtained from Y by cutting along X, and X, and we have

Y =T, U(=Z)UZ U (=X)).



Z.LiandF. Ye 248
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Figure 9. Cobordisms W and W .

Suppose P; is a saddle surface, which can be regarded as a submanifold of a pair
of pants with one boundary component on the top and two boundary components at
the bottom; see the left subfigure of Figure 9. Suppose

0P =AU Ui UpaUniiUniaUng Una,

where A1 and A, are two arcs in the top boundary component of the pair of pants, 141
and o are two arcs in the bottom boundary components of the pair of pants, and 7; ;
is the arc connecting A; and pu; fori, j € {1,2}.
Suppose ¥ =~ ¥ = 3,. Note that we have fixed a diffeomorphism / from X,
to 3,. Suppose &’ is an orientation-preserving diffeomorphism from X to X. Let W
be the union
PixXTUY xI,

where 71,1 X Zis gluedto Xy x I, 12,1 X Zis glued to —X; x I, 122 x X is glued to
¥y x I,and 1 x X is glued to =X, x I, using 4" and & o 1, respectively. Figure 9
illustrates the case that Y has two components Y| and ¥}. By the construction of ¥,
the resulting manifold W is a cobordism from Yto?Y.

The cobordism W is constructed similarly. Let P, be another saddle surface and
let W be obtained by gluing P, x ¥ and Y’ x I as shown in the right subfigure of
Figure 9.

Step 2. For some restricted graph I'4 and some surface G4 in Wy = W Uy W, we
show the cobordism map

HE(Wy,T4|G4) := HFT (W4, T4|G4) = HF (W4, T4|Gy4)
induces the identity map on

HF(Y|F) := HF"(Y|F) =~ HF (Y |F).
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w1 wo
T'4 T4
Wa
\_/4 L/

Figure 10. Ribbon graph cobordisms (W4, T4) and (W4, T7).

We prove this for the case that ¥ has two components Y; and Y,. The proof for
the case that Y is connected is similar. For i = 1, 2, let w; € Y; be basepoints and
let 'y C Wy consist of paths connecting basepoints w; in different ends of Wy; see
the left subfigure of Figure 10. Suppose W} is diffeomorphic to Wy but drawn in a
different position and suppose I} C W/ is obtained from I'y by adding an arc to
each path and choosing any ordering for the vertex with valence 3; see the middle
subfigure of Figure 10. By [69, Section 11.2], the ribbon graph cobordisms (W4, '4)
and (W}, T'}) induce the same cobordism map. Suppose Y4 = X x S1 C Wy is the
manifold in the neck of W . We know a neighborhood N(Y,) is diffeomorphic to
Yo x I. Let G4 consist of the images of X in dWy and N (Yy).

By Proposition 3.14, we can decompose (W, I'}) into two parts as shown in
the left subfigure of Figure 11 and compute HF(Wy, I'4|G4) by composition of two
cobordism maps. The first part has three components corresponding to Y; x I, N(Yy4),
and Y, x I, respectively. By Lemma 3.35, we can replace the component correspond-
ing to N(Y,4) by two components corresponding to X x D? LI (=X x D?) in the right
subfigure of Figure 8. Then we know the cobordism map HF (W4, I'}|G4) is the same
as HE(W p,I"" p|Gy4), where (W, p,I"' p) is the ribbon graph cobordism in the right
subfigure of Figure 11. By [69, Section 11.2], we can remove the arcs of I''p in the
interior of the cobordism W) p. Then we know HF(W p,I"}, p|G4) is the identity map
because

Wyp, Typ) = (Y1 UY2) x I, (wy Uwy) x I).

Thus, the cobordism map HF (W4, I'|G4) is the identity map.

Step 3. For some restricted graph I'p and some surface Gp in Wg = W Uy W, we
show the cobordism map

HF(Wg,Tg|Gp) := HFt (W, Tg|Gg) = HF~ (Wg,T3|Gp)
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Figure 11. Ribbon graph cobordisms (W4, I,) and (W; p, T, p).

induces the identity map on
HF(Y |F) := HFY (Y |F) ~ HF (Y | F).

We prove this for the case that Y has two components Y7 and Y5. The proof for the
case that Y is connected is similar. The ribbon graph cobordism (Wg, I'p) is shown in
the left subfigure of Figure 12 and suppose endpoints of I'g correspond to w} and w
in Y. The proof is essentially the same as that in Step 2. We first change the position
of Wp and add two arcs to I'g to obtain (W, Fl’g), as shown in the middle subfigure
of Figure 12. Second, we choose Yp in the neck of Wl; and set Gp to be the images
of ¥ in dW} and N (Yg). Third, we replace N(Yg) by = x D? LI (=X x D?) via
Lemma 3.35 to obtain (Wyp, 'y p), as shown in the right subfigure of Figure 12.
Finally, we remove arcs in the interior of the cobordism and show it is the identity
map because

(Wip. Thp) = (F x I, (w} L wh) x T).

Finally, we know Step 2 and Step 3 imply
HF(Y |F) = HF(Y | F)
via cobordism maps associated to ribbon graph cobordisms
(W.T4yNW)x= W,TgNW) and (W.TuNW)=x= (W, TgnW).

Note that those ribbon graph cobordisms are restricted in the sense of Definition 3.2.
[

3.4. Sutured Heegaard Floer homology

In this section, we introduce two equivalent definitions of sutured Heegaard Floer
homology. The first one is due to Juhasz [22], based on balanced diagrams of balanced
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Figure 12. Ribbon graph cobordisms (Wp, '), (W, '), and (W p, % p).

sutured manifolds. The other follows from the construction in Section 2.2, which
is essentially due to Kronheimer and Mrowka [30]. These definitions are denoted
by SFH and SHF, respectively. The equivalence of these definitions was shown by
Lekili [39] and Baldwin and Sivek [7]. We will focus on the equality for graded Euler
characteristics of two homologies.

Definition 3.37 ([22, Section 2]). A balanced diagram # = (X, «, f) is a tuple sat-
isfying the following:
(1) X is a compact, oriented surface with boundary;

2) a ={ay,...,aytand B ={B1,..., B} are two sets of pairwise disjoint simple
closed curves in the interior of X;

(3) the maps 7¢(0%X) — mo(E\) and 719(0%) — 7o(X\B) are surjective.

For such triple, let N be the 3-manifold obtained from X x [—1, 1] by attaching
3—dimensional 2-handles along «; x {—1} and 8; x {1} fori = 1,...,nandletv =
0% x {0}. A balanced diagram (X, «, f) is called compatible with a balanced sutured
manifold (M, y) if the balanced sutured manifold (N, v) is diffeomorphic to (M, y).

Suppose # = (X, «, ) is a balanced diagram with g = g(X) and n = || = |B].
Suppose H satisfies the admissible condition in [22, Section 3]. Consider two tori

Ty =y x---xXa, and Tg:= By x---x B,

in the symmetric product

Sym" S := (]‘[ z)/s,,.

i=1
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The chain complex SFC(#) is a free [F;-module generated by intersection points
x € Ty, N Tg. Similar to the construction of CF™, for a generic path of almost complex
structures J; on Sym” X, define the differential on SFC(J#) by

0 (x)=>" > #Mu(d) Y.

YEToaNTp ¢emr(x,y)
w(@)=1

Theorem 3.38 ([22,25]). Suppose (M, y) is a balanced sutured manifold. Then there
is an admissible balanced diagram ¥ compatible with (M, y). The vector spaces
H(SFC(#), d;,) for different choices of ¥ and Js, together with some canonical
maps, form a transitive system over F,. Let SFH(M, y) denote this transitive system
and also the associated actual group. Moreover, there is a decomposition

SFH(M.y) = (P SFH(M. y. ).
s€Spin®(M,0M)

Remark 3.39. The group SFH(M, y) generalizes Heegaard Floer homology [51] and
knot Floer homology [49,55]. Suppose Y is a closed 3-manifold and K C Y is a knot.
Let Y (1) be obtained from Y by removing a 3-ball and let § be a simple closed curve
on 0Y(1). Let y consist of two meridians of K. Then there are isomorphisms

SFH(Y(1),8) =~ HF(Y) and SFH(Y(K),y) =~ HFK(Y, K).

Definition 3.40. For a balanced sutured manifold (M, y), let the Z,-grading of
SFH(M, y) be induced by the sign of intersection points of Ty and Tg for some com-
patible diagram # = (X, «, B) (cf. [13, Section 3.4]). Suppose H = H;(M)/ Tors
and choose any sg € Spin€(M, y). The graded Euler characteristic of SFH(M, y) is
Xer(SFH(M. y)) := Y xe:(SFH(M. y.5)) - p o PD(h) € Z[H]/ + H,
s€Spin“(M,y)

s—so=heH2(M,0M)

where PD: H2(M, M) — H;(M) is the Poincaré duality map and p: H;(M) —
H; (M) / Tors is the projection map.

Theorem 3.41 ([13]). Suppose (M, y) is a balanced sutured manifold. Then
Xee(SFH(M. y)) = p«(z(M.y)) € Z[H]/ + H,
where T(M,y) is a (Turaev-type) torsion element computed from the map
1 (R-(y)) = m1(M)

by Fox calculus and p.. is induced by p:Hy(M) — H;(M)/ Tors = H.
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Then we define the second version of sutured Heegaard Floer homology.

Definition 3.42. Suppose (M, y) is a balanced sutured manifold and (Y, R) is a clos-
ure of (M, y) as in Definition 2.8. Define

SHF(M., y) := HF(Y |R) = @D HF* (Y. 9).
seSpin“(Y | R)

Remark 3.43. By work of Kutluhan, Lee, and Taubes [34], for any s € Spin°(Y),
there is an isomorphism

HF"(Y,s) =~ HM, (Y, s) = HM. (Y., 3).

The last group is used to define SHM in [30].

Following the discussion in Section 2.2, we can prove the naturality of SHF(M, y)
based on Floer’s excision theorem. Let SHF(M, y) be the transitive system corres-
ponding to SHF(M, y).

Theorem 3.44 ([39, Theorem 24], see also [7, Theorem 3.26]). Suppose (M, y) is
a balanced sutured manifold and (Y, R) is a closure of (M, y). Then there exists
a balanced diagram ¥ = (X, o, B) compatible with (M, y) and a singly-pointed
Heegaard diagram X' = (X', o', B, z) of Y so that the following holds.

(1) X is a submanifold of &'
(2) a and B are subsets of o' and ', respectively.

(3) Suppose o' = aUa'pand B’ = B U B’ p. There exists an intersection point
X1 € Top N Tgrp so that the map

f:SFC(#) — CF(#'|R), ¢ ¢ XX,

is a quasi-isomorphism. Here CE* (#'|R) is the chain complex of HF* (Y | R)
associated to H'.

Corollary 3.45 (Proposition 1.17). Suppose (M, y) is a balanced sutured manifold
and H = Hy(M)/ Tors = H?(M, dM )/ Tors. We have

SFH(M, y) = SHF(M, y)

with respect to the grading associated to H and the 7., grading, up to a global grad-
ing shift.
In particular, we have

Xer(SFH(M, y)) = xo(SHF(M,y)) € Z[H]/ + H,

where yo..(SHF(M,y)) is defined as in Definition 2.44.
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Proof. Tt suffices to show the quasi-isomorphism in Theorem 3.44 respects spin®
structures and Z,-gradings.

Consider the Z,-gradings at first. Suppose that ¢; and ¢, are two generators of
SFC(#). Note that the Z,-grading of ¢; is defined by the sign of the corresponding
intersection point in T N Tg for i = 1, 2. For ¢; X X1, the Z5-grading is defined by
mod 2 Maslov grading, which coincides with the sign of the corresponding intersec-
tion point in Tgs N Tg/. Thus, we have

gry(er) —gry(ez) = grp(er X X1) — gry(€z X X1),

where gr, is the Z,-grading.
Then we consider spin® structures. Consider ¢; for i = 1,2 as above. From [22,
Lemma 4.7], there is a one chain y¢, — ¢, such that

s(c1) —s(c2) = PD([ye; — e, D)

where
$(-): Tg N Tg — Spin°(M, 0M)

is defined in [22, Definition 4.5], and
PD:H,(M) — H3(M, M)

is the Poincaré duality map.
From [51, Lemma 2.19], we have

g’z(cl X Xl) - 52(02 X Xl) = PD/(i*([Vcl - VCQ]))’

where s, (-): T N Tgs — Spin°(Y) is defined in [51, Section 2.6] and PD": H; (Y) —
H2(Y) is the Poincaré duality map, and i,: Hy (M) — H;(Y) is the map induced by
inclusioni: M — Y.

Hence, we have

ci(sz(e1 x X)) —c1(sz(e2 x X)) = ZPD/(i*([J/c] - ch]))-

Finally, the argument about graded Euler characteristics follows from definitions.
n
4. The graded Euler characteristic of formal sutured homology

In this section, we prove the graded Euler characteristic of formal sutured homo-
logy is independent of the choice of the Floer-type theory. Throughout this section,
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we assume that H is a Floer-type theory, i.e., it satisfies all three Axioms (A1), (A2),
and (A3). For simplicity, we say “a property is independent of H” if a property is inde-
pendent of the choice of the Floer-type theory. Suppose (M, y) is a balanced sutured
manifold. If the admissible surfaces and the closure of (M, y) are fixed, then the
graded Euler characteristic yo(SH(M, y)) in Definition 2.44 is considered as a well-
defined element in Z[H, (M )/ Tors], rather than Z[H; (M )/ Tors]/ &= (Hy (M )/ Tors);
see Remark 2.45. Note that in this section, we avoid using H to denote H; (M)/ Tors
and the symbol H usually denotes a handlebody.

4.1. Balanced sutured handlebodies

In this section, we deal with Z"-gradings for a balanced sutured handlebody. We start
with the following lemma about the sign ambiguity.

Lemma 4.1. Suppose (M, y) is a balanced sutured manifold, S C (M, y) is an
admissible surface. Suppose (Y1, R1) and (Y2, Ry) are two closures of (M, y) of
the same genus so that S extends to closed surfaces Sy and S, as in Section 2.3. If
Xor(H(Y1|R1)) is already determined without the sign ambiguity, then xo(H(Y2|R2))
is determined without the sign ambiguity from yo(H(Y1|R1)) and the topological
data of (Y1, R1) and (Y3, R5).

Proof. In Section 2.2, we construct a canonical map
@12: H(Y1|R1) — H(Y2|Ra).

From the proof of Theorem 2.24, the canonical map ®;, necessarily preserves the
grading induced by S. From the construction of @, in Section 2.2, the canonical
map is a composition of a few cobordism maps (or the inverse). Then the Z,-grading
shift follows from Axiom (A3-3). ]

Next, we consider gradings associated to admissible surfaces. To fix the ambi-
guity of Hy(M)/ Tors, we will fix the choices of admissible surfaces. For sutured
handlebodies, we start with embedded disks.

Proposition 4.2. Suppose H is a genus g > 0 handlebody and y C 0H is a closed ori-
ented 1-submanifold so that (H,y) is a balanced sutured manifold. Pick Dy, ..., Dy,
a set of pairwise disjoint meridian disks in H so that [D], ..., [Dg] generate
Hy(H, 0H). Then for any fixed multi-grading i = (i1, ... ,ig) € Z& associated to
Dy, ..., Dg, the Euler characteristic

XSH(=H, =y, 1)) € Z/{£1}



Z.LiandF. Ye 256

depends only on (H,y), D1,...,Dg and i € Z8, and is independent of H. Further-
more, if a particular closure of (—H, —y) is fixed, then the sign ambiguity can be
removed.

Proof. We fix the handlebody H and the set of disks D1, ..., Dg C H.For any suture

y on 0H, define
g

I(y) =, min |Dj Nyl
Yy’ 1s 1sotopic toyi 1

where | - | denotes the number of points. We prove the proposition by induction on
I(y). Since [y] = 0 € Hi(0H), we know |D; N y|is alwaysevenfor j =1,...,g.

Note that an isotopy of y can be understood as combinations of positive and neg-
ative stabilizations in the sense of Definition 2.38, and the grading shifting behavior
under such isotopies (stabilizations) is described by Theorem 2.40, which is determ-
ined purely by topological data and is independent of H. Hence, we can assume that
the suture y has already realized /(y).

First, if I(y) < 2g, then there exists a meridian disk D; with D; Ny = @. Then
it follows from Proposition 2.33 that SH(—H, —y) = 0 since —H is irreducible
while (—H, —y) is not taut. Hence, for any multi-grading i € Z#, we have that
x(SH(=H,—y.i)) = 0.

If I(y) = 2g, then either there exists some integer j sothat D; Ny =@ orfor j =
1,...,g, wehave |D; N y| = 2. In the former case, we know that SH(—H,—y) =0
and hence y(SH(—H, —y,i)) = 0 for any multi-grading i € Z%. In the later case, we
know that (—H, —y) is a product sutured manifold. It follows from Proposition 2.37
and Proposition 2.30 that

SH(—H,—y) = SH(—H,—.0) = F.

Hence
+1 fori=0=(0,...,0),

X(SHH, =y, 1) = {o for i € Z&\{0}.

Note that the ambiguity +1 comes from the choice of the closure. If we choose a
particular closure Y of (—H, —y), then the Euler characteristic has no sign ambiguity.
Since (H, y) is a product sutured manifold, there is a “standard” closure (S1 X X,
{1} x ¥) as in [30]. By Axiom (A3-2), we have

y(H(S! x Z|{1} x X)) = —1.

Then for any other closure (Y, R), by Lemma 4.1 o (SH(Y |R)) has no sign ambigu-
ity.
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Dy

Figure 13. The bypass arc « that reduces the intersection function /.

Now, suppose we have proved that, for all y so that I(y) < 2n, the Euler char-
acteristic of SH(—H, —y, i), viewed as an element in Z/{%1}, is independent of H,
and that when we choose any fixed closure of (—H, —y), the sign ambiguity can be
removed. Next we deal with the case when I(y) = 2n.

Note that we have dealt with the base case I(y) < 2g, so we can assume that
n > g + 1. Hence, without loss of generality, we can assume that |[D; N y| > 4.
Within a neighborhood of dD1, the suture y can be depicted as in Figure 13. We can
pick the bypass arc « as shown in the same figure. From Proposition 2.46, for any
multi-grading i € Z#, we have an exact triangle

SH(_Hv -V i)

/ \ 4.1

SH(—H,—y",i) «—— SH(—-H,—)',i)

Note that the suture Y’ and y” are determined by the original suture y and the
bypass arc o, which are all topological data. From Figure 13, it is clear that

I(y))<I(y)—2 and I(y")<I(y)-2.

Hence, the inductive hypothesis applies, and we know that the Euler characteristics
of SH(—H,—y”,i) and SH(—H, —y’, i) can be fixed independently of H. Note that
the maps in the bypass exact triangle (4.1) are described by Proposition 2.20. Hence,
we conclude that the Euler characteristic of SH(—H, —y, i) is also independent of H.
Thus, we finish the proof by induction. |

Next, we deal with gradings associated to general admissible surfaces.

Proposition 4.3. Suppose H is a genus g handlebody, and S is a properly embed-
ded surface in H. Suppose y C 0H is a suture so that (H, y) is a balanced sutured
manifold and S is an admissible surface. Then the Euler characteristic

XSH(=H,—y.S,])) € Z/{*1}
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depends only on (H,y), S, and j € 7 and is independent of H. Furthermore, if we
Jix a particular closure of (—H, —y), then the sign ambiguity can also be removed.

Before proving the proposition, we need the following lemma.

Lemma 4.4. Suppose (M, y) is a balanced sutured manifold and S C (M, y) is a
properly embedded admissible surface. Suppose « is a boundary component of S so
that o bounds a disk D C OM and |a N y| = 2. Let S’ be the surface obtained by
taking the union S U D and then push D into the interior of M. Then for anyi € Z,

we have
SH(M,y,S,i) =SH(M,y,S',i).

Proof. Push the interior of D into the interior of M and make D N S’ = @. It is clear
that
[S]=[S'UD] € Hy(M,0M) and dS = d(S’ U D).

In Section 2.3, when constructing the grading associated to S’ U D, we can pick a
closure (Y, R) of (M, y), so that S’ and D extend to closed surfaces S’ and D in Y,
respectively. Since |0D N y| = 2, we know that D is a torus. Since dS = 9(S’ U D),
we know that S also extends to a closed surface S and from the fact that [S] =
[S” U D] we know that

[S]=1[S"U D] =[S"] + [D].

Since D is a torus, from Axioms (A1-4) and (A1-6), we know that the decompositions
of H(Y | R) with respect to S and S’ are the same. Thus, it follows that

SH(M,y,S,i)=SH(M,y,S',i). m
Proof of Proposition 4.3. Tt is a basic fact that the map
04: Hz(H, 8H) — H1(8H)

is injective, and Hy (H, 0H ) is generated by g meridian disks, which we fix as Dq,.. .,
D . Hence, we assume that

[S]=a1[D1] +--- +ag[Dg] € H2(H, 0H).

Case 1. dS consists of only dD;, i.e.,

g
38 = | J(Uq;0D).

i=1

where (J,. dD; means the union of a; parallel copies of dD;.
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Figure 14. The cut-and-paste surgery on D1 and S.

Then it follows from the construction of the grading and Axiom (A1-6) that

g

SH(-H,-V,S,j) = SH(—H, - (U Di), j)
i=1 a;
= P SH(—H.-y.(D1.....Dg). (ji1.---. jg)).
Jitetjg=]

Hence, this case follows from Proposition 4.2.
Case 2. 0S contains some component that is not parallel to 0D; for j = 1,..., g.

Step 1. We modify S and show that it suffices to deal with the case when S N D; =@
forj=1,...,g.

Note that im(d«) C H;(0H) is generated by [0D4], ..., [0D,], so we have 9§ -
dD; =0for j = 1,...,g. Here - denotes the algebraic intersection number of two
oriented curves on dH . This means that for j = 1, ..., g, the intersection points of
dD; with dS can be divided into pairs. Suppose two intersection points of dD; with
dS of opposite signs are adjacent to each other on dD1, as depicted in Figure 14. We
can perform a cut-and-paste surgery along D and S to obtain a new surface S;. From
the same figure, it is clear that after isotopy, we can make

10D N 3Sy| < |aD, N 3S| — 2.

Note that if we perform a cut-and-paste surgery along S; and —D;, we obtain
another surface S,. From Figure 15 it is clear that dS; = 05 U 6, where 0 is the
union of some null-homotopic closed curves on dH . We can isotope S, to make each
component of 6 intersects the suture twice. Let S3 be the resulting surface of such an
isotopy and S4 be the surface obtained from S3 by capping off every component of 6.
Then we have

[S]=[S4] € H2(H,0H) and 0S = 0S4.
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% cutand
N
paste

Figure 15. The cut-and-paste surgery on —D; and S7.

Hence, from Lemma 4.4 we know that

SH(—H,—-y.S,j)=SH(—H.,y,S4. )
= SH(_H7 V, S37 j)
=SH(—H,—y,S2,j + j(S2,53))

= @SH(_Hv _)/7 (Dla Sl)’ (jl’ ‘]2))
J1+j2=j+j(52,83)

By Theorem 2.40, the shift j(S», S3) depends on the isotopy from S, to S3, which
is determined by the topological data and is independent of H. Hence, we reduce the
problem to understanding the Euler characteristic of SH(— H, —y) with multi-grading
associated to (D1, S1), with

10D1 N 3S1| < |aD, N 3S| — 2.

Repeating this argument, we finally reduce to the problem of understanding the Euler
characteristic of SH(—H, —y) with multi-grading associated to (D1, ..., Dg, Sg),
with

0D; NdS; =0 forj=1,...,g.

Step 2. We modify S further to reduce to Case 1.
If every component of 35, is homotopically trivial, then we know that

[Se] =0 € Hy(H, 9H),

since the map Hp(H, dH) — H;(dH) is injective. We isotope each component of
0Sg by stabilization to make it intersect the suture y twice and then cap it off by a
disk. The resulting surface S¢4; is a homologically trivial closed surface in H, so
SH(—H, —y) is totally supported at grading O with respect to Sg 1 1. The grading shift
between Sg and Sg 41 can then be understood by Theorem 2.40, and is independent
of H.
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Note that dH\(0D; U --- U dDy) is a 2g-punctured sphere, so 4.5 is homotopic-
ally trivial when removing punctures on the sphere. If some component C of 95, is
not null-homotopic, then C is obtained from some dD; by performing handle slides
(or equivalently band sums) over 0D, ..., dDg for some times.

If we isotope C to make it intersect some dD; twice and then apply the cut-and-
paste surgery, the resulting curve is isotopic to the one obtained by performing a
handle slide over dD;. Explicitly, in Figure 14, suppose two right endpoints of arcs in
dS (the green arcs) are connected, then the right part of 0.5 is a trivial circle, and the
left part of 0.5 is obtained from d.S by performing a handle slide over 0D ;. Thus, we
can apply the cut-and-paste surgery for many times, which is equivalent to performing
handle slides over dD1, ..., dDg for some times. Finally, we reduce C to the curve
isotopic to dD; . Then we reduce the problem to understanding the Euler characteristic
of SH(—H, —y) with multi-grading associated to (D1, ..., Dg, Sg42), where Sg 42
is a surface so that each component of 35, 1 is parallel to £3D; for some i. Case 1
applies to Sg12, and we finish the proof. |

Corollary 4.5. Suppose H is a handlebody and y is a suture on 0H so that (H,y) is
a balanced sutured manifold. Suppose S1, ..., Sy are properly embedded admissible
surfaces in (H,y). Then the Euler characteristic

XSH(=H, =y, (S1,....80), (i1.....1n))) € Z/{£1}

depends only on (H,y), S1,...,Sn, and (i1, ...,iy) € Z", and is independent of H.
Furthermore, if we fix a particular closure of (—H, —y), then the sign ambiguity can
also be removed.

Proof. The proof is similar to that for Proposition 4.3. |

4.2. Gradings about contact 2-handle attachments

In this section, we prove a technical proposition about the grading behavior for the
map associated to contact 2-handle attachments.

Suppose M is a compact oriented 3-manifold with boundary, and S C M is a
properly embedded surface. Suppose @ C M is a properly embedded arc that inter-
sects S transversely and da N dS = @. Let N = M\ int(N(«)), Sy = SN N, and
1 C ON be a meridian of « that is disjoint from Sy . Let Y,y be a suture on dN satisfies
the following properties.

(1) (N, yn) is balanced, S is admissible, and |yy N p| = 2.

(2) If we attach a contact 2-handle along u in the sense of [4, Section 4.2], then
we obtain a balanced sutured manifold (M, yur).
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From [4, Section 4.2], there is a map
C.:SH(—N,—yn) - SH(—M, —yn)

constructed as follows.

Push p into the interior of N to become u’. Suppose (No, ¥n,0) is the manifold
obtained from (N, yy) by a 0-surgery along u’ with respect to the framing from oN .
Equivalently, (No, yn,0) can be obtained from (M, yps) by attaching a 1-handle. Since
u' C int(N), the construction of the closure of (N, yy) does not affect u’. Thus, we
can construct a cobordism between closures of (N, yx) and (N, yn,0) by attaching
a 4-dimensional 2-handle associated to the surgery on u’. This cobordism induces a
cobordism map

Cw:SH(=N,—yn) — SH(=No, —yn,0)-

It is shown in [4, Section 4.2] (or also [30, Section 6]) that attaching a product
I-handle does not change the closure, so there is an identification
t: SH(—M. —ypr) = SH(=No, —yn.0)-
Thus, we define
Cp=1"oCy.
The main result of this section is the following proposition.

Proposition 4.6. Consider the setting as above. For any i € 7, we have
Cu(SH(=N,—yn,Sn,i)) C SH(—M,—yp. S.1i).

Proof. We proceed in three steps.

Step 1. We consider the grading behavior of the map C,,/ for gradings associated to
Sy and S.

Since p is disjoint from S, so we can also make yu’ disjoint from Sy = S N N. As
a result, the surface Sy survives in (Ny, yn,0). From Axiom (A1-7), the cobordism
map associated to the O-surgery along u’ preserves the grading associated to Sy

C,U/(SH(_N’ —VN, SN’ l)) - SH(_N(% —VN,0, SN’ l)

Step 2. We show t: SH(—M, —yp, S, 1) = SH(—No, —yYn.0,S,1).

As discussed above, (No, Yn,0) is obtained from (M, ypr) by a product 1-handle
attachment. This product 1-handle can be described explicitly as follows. In
(No., YN,0). there is an annulus A bounded by p and its push-off j’. We can cap off p/
by the disk coming from the 0-surgery, and hence obtain a disk D with dD = u. By
assumption, we know that [0D N yx,0

= |u N yy| = 2. Hence, D is a compressing
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disk that intersects the suture twice. If we perform a sutured manifold decomposition
on (Ny, Yn,0) along D, it is straightforward to check the resulting balanced sutured
manifold is (M, yar). However, in [24], it is shown that decomposing along such a disk
is the inverse operation of attaching a product 1-handle, and the disk is precisely the
co-core of the product 1-handle. From this description, we can consider the product
1-handle attached to (M, yas) as along two endpoints of a. Since da N dS = @,
the surface S naturally becomes a properly embedded surface in (No, yn,0). From
Axiom (A1-7), we know that the map ¢ preserves the gradings as claimed.

Step 3. We show SH(—Ny, —yn.0,S,i) = SH(—No, —yYn.0. SN, 0).

IfSNa=0,then § =Sy =S NN and the above argument is trivial. If S N«
@, then Sy is obtained from S by removing disks containing intersection points in
a N S. Then dSx\3dS consists of a few copies of meridians of «. For simplicity, we
assume that there is only one copy of the meridian of «, i.e., dSy\0S = w. The
general case is similar to prove.

After performing the 0-surgery along i, we know that the surface Sy C Nj is
compressible. Indeed, we can pick u” C int(Sy) parallel to  C 9Sy. Then there is
an annulus A’ bounded by " and u’, and we obtain a disk D’ by capping u’ off by
the disk coming from the 0-surgery. Performing a compression along the disk D’, we
know that Sn becomes the disjoint union of a disk D’ and the surface S C Ny. Note
dD" is parallel to the disk D discussed above. Since

d(D"US)=0Sy and [D”US]=[Sy] € Hy(Ny, INy),
From (A1-6), we know that

SH(_NO’ _VN,O, SN7 l) = SH(_N()a _VN,()’ S ) DN7 l)
=Y SH(=No. —yn,0.(S.D"). (i1.i2)).

i1 +ir=i
Since the disk D" intersects y), twice, from Proposition 2.30 (2), we know that
SH(—No, —yn,0) = SH(=No. —yn,0. D", 0).
Hence, we conclude that

SH(_NO’ _J/N,O’ SN7 l) = ZSH(_NO’ _)’N,07 (S’ D//)v (il, 12))
i1+ix=i

= SH(_N07_)/N,0’S’Z-)' u

Remark 4.7. Proposition 4.6 is a generalization of [2, Lemma 2.2], where « is a
tangle and Sy is an annulus.



Z.LiandF. Ye 264

4.3. General balanced sutured manifolds

In this section, we prove the main theorem of this section, which is a restatement of
the second part of Theorem 1.14.

Theorem 4.8. Suppose (M, y) is a balanced sutured manifold and {S, ..., Sy} is a
collection of properly embedded admissible surfaces. Then the Euler characteristic

X(SH(_M’ _V, (Sly ) Sl’l)7 (ily DR i}’l)))
depends only on (M, y), S1,..., Sy, and (iy,...,iy) € Z", and is independent of H.

Corollary 4.9. Suppose (M, y) is a balanced sutured manifold and suppose H =
H; (M) / Tors. Then the graded Euler characteristic

Xer(SH(M. y)) = xoe(SH® (M. y)) € Z[H]/ + H
is independent of the choice of the fixed genus g of closures.
Proof. From Corollary 3.45 and Theorem 4.8, we know

Xer(SHE (M. ) = xue(SFH(M. y)) € Z[H]/ £ H.

where the right-hand side is independent of the choice of the fixed genus g of closures.
]

Proof of Theorem 4.8. First we can attach product 1-handles disjoint from Sy, ..., S,.
From [4, Section 4.2], attaching a product 1-handle does not change the closure and
hence does not make any difference to the multi-grading associated to (S1, ..., Sy).
Hence, we can assume that y is connected from now on. From [42, Section 3.1], we
can pick a disjoint union of properly embedded arcs

da=a1U---Uauy

so that

(1) fork =1,...,m, we have day N Ry (y) # @ and dax N R_(y) # @,

(2) M\ int(N(«)) is a handlebody.
Then we apply the arguments involved in [42, Section 3.2]: since y is connected, we
can pick pairwise disjoint arcs {1, ..., {, so that forany k = 1,...,m, we have

0l = day and |& Ny|=1.

Forany k = 1,..., g, let Bx C i be a neighborhood of the intersection point {x N y
and let

S \Bk = Ci,+ U k-,
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Figure 16. The suture I'g.

where {x + C R4 (y). Push the interior of B into the interior of M to make it a
properly embedded arc, which we still call B. Let

B=p1U---UPn.

Let N = M\ int(N(B)), and let y be the disjoint union of y and a meridian for each
component of 8. It is explained in [42, Section 3.2] that (N, yx) can be obtained from
(M, y) by attaching product 1-handles disjoint from Sj,...,S,,, so there is a canonical
identification

SH(—M, =y, (S1, ... Sn). (i1, .. .in))
= SH(—N, —VN, (Sl, e Sn), (il, Cen ,ln))

Let H = M\ int(N(x U B)). It is straightforward to check that A is a handlebody.
Let I';, be the disjoint union of y and a meridian for each component of o U . Let
the suture I'yg be obtained from I';, by performing band sums along {x 4 and (i —
for k = 1,...,m. See Figure 16. It is straightforward to check that (N, yy) can
be obtained from (H, I'y) by attaching contact 2-handles along the meridians of all
components of «.

We prove the theorem in the case when m = 1, while the general case follows
from a straightforward induction. If m = 1, then « is connected. Suppose u is the
meridian of «. As explained in Section 4.2, attaching a contact 2-handle along u
is the same as performing a 0-surgery along a push-off i’ of w. There is an exact
triangle associated to the surgeries along ' that is discussed in [42, Section 3.2] (see
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also [18, Section 3.1]):

/ \ 4.2)

SH(—H,-Ty)¢» «—— SH(—H,-T)

The map C,, is the map associated to the contact 2-handle attachment as discussed
in Section 4.2. The suture I'; is obtained from [y by twisting along (—u) once. For
Jj=1,...,nletS; g =S; N H.Since u is disjoint from §; i for j = 1,...,n, the
proof of Proposition 4.6 implies there is a graded version of the exact triangle (4.2):

SH(—N, =y, (S1, -+, Su), (i1, - -+ in))

/

SH(-H,—To,(S1,z.....Sn,m). ((1,....in)))

\

SH(—H.,-T'1,(Su,a. - Snm). (1, ..., in)))

Then Theorem 4.8 follows from Proposition 2.4 and Corollary 4.5. |

5. The canonical mod 2 grading

Throughout this section, we focus on special cases of balanced sutured manifolds
obtained from connected closed 3-manifolds and knots in them (cf. Remark 3.39).

Definition 5.1. Suppose that Y is a closed 3-manifold and z € Y is a basepoint. Let
Y (1) be obtained from Y by removing a 3-ball containing z and let § be a simple
closed curve on Y (1) 2 S2. Suppose that K C Y is a knot and w is a basepoint on
K. Let Y(K) be the knot complement of K and let y = m U (—m) consist of two
meridians with opposite orientations of K near w. Then (Y (1), §) and (Y(K), y) are
balanced sutured manifolds. Define

H(Y,z) := SH(Y(1),§) and KH(Y, K,w) := SH(Y(K), 7).

Convention. Different choices of the basepoints give isomorphism vector spaces.
Since we only care about the isomorphism class of the vector spaces, we omit the
basepoints and simply write H(Y) and KH(Y, K) instead.

To be more specific and consistent with [42], in this section, we focus on instanton
theory. Based on the discussion in Section 2.1, we specify the Floer homology H(Y')
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and the cobordism map H(W) to be /°(Y) and I(W, v). For a connected closed
3-manifold, the framed instanton Floer homology / #(Y) defined in [32] is isomorphic
to H(Y) when H is instanton theory. Hence, we replace H(Y) by 7#(Y) throughout
this section. Also we replace SH and KH by SHI and KHI, respectively. Recall that
the definitions of SHI and KHI a priori depend on the choice of a fixed and large
genus g of closures. We write

SHI®* and KHI®

explicitly in this section. However, for instanton theory, closures of different genus
induce isomorphic groups and we can use closures of genus one to define sutured
instanton homology (cf. [30, Section 7]).

In this section, we discuss the canonical Z,-grading on KHI? and the decompos-
ition of 7* in Theorem 1.18.

5.1. The case of an unknot

In this section, we study the model case: the unknot U in S3. Suppose py and Ay are
the meridian and the longitude of U, respectively. The knot complement is identified
with a solid torus St x D?:

p:83(U) S s x D2, (5.1)

where p(uy) = S x {1}, and p(Ay) = {1} x dD?. For co-prime integers x and y,
let

V(x,y) = J/XAU—%—yMU C 853(U)

be the suture consisting of two disjoint simple closed curves representing +(xAy +
YIu).-

Convention. Note y(x y) = ¥(—x,—y). From Proposition 2.30 (4), the orientation of the
suture does not influence the isomorphism type of formal sutured homology. Hence,
we do not care about the orientation of the suture, and we always assume y > 0.

We describe a closure of the balanced sutured manifold (S3(U), y(x,y)) as follows.

Let  be a connected closed surface of genus g > 1. Suppose Ys = S! x ¥ and
3 = {1} x X. Pick a non-separating simple closed curve ¢ C X and suppose its com-
plement is Yx () = Yx\ int(N(«)). There is a framing on dYx(«) induced by the
surface X. Let , and A, be the corresponding meridian and longitude, respectively.
Also, suppose p € X is a point disjoint from «. According to the discussion in Sec-
tion 2, we can form a closure (Y, R, w) of (S3(U), Y(x,y)) as follows:

Y =S*(U)Uy Ys(@),R=X and o=S"'x{pt}, (5.2)
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where ¢: 953 (U) Sy () is an orientation reversing diffeomorphism such that
¢(xAy + ypu) = Aa. (53)

Note that different choices of the preimage of u, lead to different closures of
(S3(U), Y(x.y))- From (5.3), we know that

d(Ay) = zAa + Ylha,

where z = x if y =0, z = y is arbitrary if y = 1, and zx = 1 (mod y) in other cases.
Again, different choices of z lead to different closures. From now on, we fix the value
of z as follows: z =x of y =0,z = 0if y = 1, and z is the minimal positive integer
so that y|(xz — 1). Now, composing ¢ with the inverse of the map p in (5.1), suppose

Y = Y(@) Upop1 S' x D2,
where ¢ 0 p~1:9(S! x D?) — Y () is a diffeomorphism such that
¢op ({1} x dD?) = zAg + Yila.
Hence, Y is obtained from Y by performing a y/z surgery and we also write
Y = Ay/z-
Lemma 5.2. For any suture y(x yy on 3S3(U), we have

X(SHI® (S*(U), y(x,))) = £y

Proof. First, we can focus on the closure (17 = ?y/z, R =X, w) asin (5.2). We need
to compute the Euler characteristic of

SHI? (S3(U), yx.y)) = 1°(Y, 2 |2).

If y =0, then x = £1, but (S*(U), y(«1,0)) are both irreducible and non-taut. By
Proposition 2.33, we know that

SHIg(S3(U)J/(1,0)) = 0.
If y =1,thenz = 0 and 171/0 = S x . By Axiom (A1-5), we have
x(I°(Y10]%)) = 1.

If y>1, we have y > z > 1. If z = 1, then we have an exact triangle from
Axiom (A2)

19(Yy1|2) ————— I°(},[3)

~ T

19(Y1)0|)
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where the parity of the map f is odd and those of the rest two are even by Proposi-
tion 2.4. Hence, we conclude by induction that

A(I°(Fy|D)) = —y.

Finally, when y > z > 1, suppose the continued fraction of —y/z is

Y _ —
Y o, an] = ap — —————
A al— T

where a, < —2. Define

y/ 1
— = [ag,...,an—1] and —— =]Jag,...,an—1 + 1],

P -
where y’, v/ p > 0. From a basic property of continued fraction, we have
y,yp property

y=y +y" and z=z+7".

From Axiom (A2), there exists an exact triangle

Iw(?y”/z”lz) Iw(?y/z|2)

o~

Iw(?y’/z’lz)

where the parity of the map f is odd, and those of the rest two are even by Proposi-
tion 2.4. |

Remark 5.3. It is worth mentioning that different papers have different normaliza-
tions for the canonical Z,-grading. Our choice of normalization in Axiom (A3) is the
same as in [29]. In Lidman, Pinzén-Caicedo, and Scaduto’s setup [44], they adapted
another normalization and proved y(I°(S! x X|X)) = 1 for T of any genus that is
at least one.

Corollary 5.4. Suppose (Y', R', ") is a closure of (S*(U), y(x.y)), then
xU(Y|R)) = +y.

Proof. This corollary follows directly from the fact that canonical maps from
1 “’(1//\ =) to I9°(Y'|R') is a composition of cobordism maps and hence is homo-
geneous. ]
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5.2. Sutured knot complements

Suppose Y is a closed 3-manifold and K C Y is a null-homologous knot. Any Seifert
surface S of K gives rise to a framing on Y (K): the meridian u can be picked as the
meridian of the solid torus N(K), and the longitude A can be picked as S N dY(K).
The “half lives and half dies” fact for 3-manifolds implies that the following map has
a 1-dimensional image:

dx: Ha(Y(K), 9Y(K): Q) — H1 (9Y(K); Q).

Hence, any two Seifert surfaces lead to the same framing on Y (K).

Definition 5.5. The framing (A, —u) defined as above is called the canonical framing
of (Y, K). With this canonical framing, let

Y(x.y) = Vxi+yu C Y (K)

be the suture consisting of two disjoint simple closed curves representing £(xA +
YIL).

Our goal in this section is to define a canonical Z,-grading on SHI# (Y(K), y(x,y))
for any fixed large enough g. Recall SHI® (M, y) is the projectively transitive system
formed by closures of (M, y) of a fixed genus g. We first assign a Z,-grading for any
closure of (Y(K), Y(x,y))-

Suppose (Y, R, w) is a closure of (Y(K), Y(x,y))- Then we can form a closure
(Yu, R, ®) of (S*(U), ¥(x.y)) by taking

Yy = Y \(int(Y(K))) Uia S*(U). 54

Here id is the diffeomorphism between toroidal boundaries, which respect the canon-
ical framings on both boundaries.
Definition 5.6. The modified Z,-grading on I1°(Y | R) is defined as follows.

(1) If x(I®(Yy|R)) is negative, then the grading is defined by the canonical
Z,-grading on 1® (Y |R).

(2) If y(I°(Yy|R)) is positive, then the grading is defined by switching the odd
and even parts of 7% (Y | R) with the canonical Z,-grading.

Suppose (Y, R, w) and (Y', R, w) are two closures of (Y(K), Y(x,y)) SO that Y’
is obtained from Y by a Dehn surgery along a curve B C Y, which is disjoint from
int(M), R and w. Then there is a map

F:1°(Y|R) — I°(Y'|R)
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associated to the Dehn surgery along 8 C Y. Let (Yy, R, w) and (Y}, R, w) be the
closures of (S3(U), y(x.y)) constructed as in (5.4). There is also a map

Fy:1°(Yy|R) — 1°(Yg|R)
associated to the same Dehn surgery along 8 C Y. Then we have the following.

Lemma 5.7. The maps F and Fy have the same parity with respect to the canonical
Z,-gradings on corresponding instanton Floer homologies.

Proof. Note that Hy (S3(U); Q) = Q(uy) and the map
il H (38*(U): Q) — Hi(S*(U): Q)

induced by the inclusion has a 1-dimensional kernel generated by Ay . For a null-
homologous knot K C Y, we know that the map

i« H1(0Y(K); Q) — H1 (Y(K); Q)

induced by the inclusion has a 1-dimensional kernel generated by the longitude A of
K and has a 1-dimensional image generated by the meridian u of K. Hence, from the
Mayer-Vietoris sequence, we know that there is an injective map

j Hi(Yu: Q) = Hi(Y;Q),

that sends [y] to [u] and sends every homology class in Yy \S3(U) = Y \Y(K)
using the natural map

i, Hi(Y\Y(K); Q) - Hi(Y: Q).
Similarly, since 8 N int(Y(K)) = @, we know that there is an injective map
JP Yy (B): Q) = Hi(Y(8): Q).

which fits into the following commutative diagram

H (07 (8): Q) —*— Hy(Tu(B): Q)

| %

H(3Y(8); Q) —— H,(Y(B); Q)

where (4 and LEZ are induced by natural inclusions. Hence, we conclude, under the
identification H; (3Yy (B); Q) = H1(0Y(B); Q), two kernels are also identified:

ker(t¥) = ker(i4).

Since F and Fy are associated to Dehn surgeries along 8 of the same slopes, we
conclude from 2.4 that their parity must be the same. |
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Lemma 5.8. Suppose that (Y, R, w) and (Y', R, ') are two different closures of
(Y(K), ¥(x,y)) so that g(R) = g(R’). There is a canonical isomorphism

®:1°(Y|R) = I1°/(T'|R))

as in Definition 2.10. Then with respect to the modified Z.,-grading as in Definition
5.6, the canonical map ® is grading preserving.

Proof. From the definition of ® and Axiom (A3-3), we know that ® is always homo-
geneous. For two closures (Y, R, w) and (Y', R, ') of (Y(K), y(x.y)), We can form
two corresponding closures (Yy, R, ) and (Y{,, R', ") of (S3(U), Y(x.y)) asin (5.2),
respectively. There is a canonical map

Dy I1°(Yy|R) = 1 (Y} |R).

From Definition 5.6, the modified Z,-gradings on /(Y |R) and I®(Y'|R’) coin-
cide if and only if the canonical Z,-gradings on 1% (Yy |R) and 1 “’(7{] |R’) coincide.
The definition of the modified Z,-grading automatically makes ®; even under the
modified Z,-grading. Hence, to show that ® is grading preserving, it suffices to show
that ® and ®y have the same parity under the modified Z,-grading.

From the construction of the canonical maps, there is a sequence of simple closed
curves f1,..., B, on R, such that the map & is the composition of cobordism maps
induced by a diffeomorphism and the sequence of Dehn surgeries. Similarly, the map
dy is the composition of the maps induced another diffeomorphism and the same
sequence of Dehn surgeries on Yy . Since the surgery curves are all on R and disjoint
from int(Y(K)), cobordism maps induced by diffeomorphisms are always with even
degrees, i.e., preserving the Z,-grading. For Dehn surgeries along f8;, we can apply
Lemma 5.7 and then finish the proof. ]

Definition 5.9. Suppose (Y(K), y(x,y)) is the balanced sutured manifold constructed
as before and suppose g is the fixed large enough genus of closures. By Lemma 5.8,
we can define the canonical Z,-grading on SHI® (Y (K), y(x,y)) by the modified
Z,-grading on the closures. In particular, there is a canonical Z,-grading on
KHI® (Y, K).

Proposition 5.10. The canonical Z,-grading on SHI® (Y (K), y(x,y)) is independent
of the large enough genus g.

Proof. We need to compare the Z,-grading for closures of different genera. First we
deal with the case of unknot. As in Section 5.1, we can constructed a standard closure
()7), /z» 2) for (Y(K), ¥(x,y))- Here, the genus of X can be arbitrary. To specify the
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genus, in the proof of this corollary, we temporarily write (?y /z, 2) as (}_’yg/ ;o 2g)-
In [3], the canonical map

OEEH (VS 1Sg) = [°(V ] [Zer)

is constructed as follows: recall @ C X is a non-separating simple closed curve, and

Yg

. = Y(K)U (S x Zg)\N(@).

Let B C X be another simple closed curve so that o N B = @. Take a curve 6 C X,

be non-separating simple closed curve as well. Then we can form (ng/jl, Yg+1)

from (ngz, ¥g) and (S! x ¥, X5) by cutting them open along S! x 8 and S! x 6
respectively, and then glue the two pieces together along toroidal boundaries by the
identifying the S factor and B = 6. Then, as in [30], there is a cobordism W&-8+1
from (ng/z, Tg) and (S! x 25, ) to (fyg/;rl, Y ¢+1), known as the Floer excision
cobordism. In the proof of [44, Proposition 3.6] and [29, Lemma 3.3], the degree of
the cobordism induced by cobordisms constructed in the same way as W&-€+! has
been computed explicitly. By a similar computation, we know that the canonical map
®8:8 11 preserves the modified Z,-grading (Note by the above argument, the modified
Z,-grading for (I?yg ,» 2g) is the same as the canonical grading). For any two closures
of (Y(K), Y(x,y)), as in [3], the canonical maps are constructed by composing the
maps induced by some W&-¢+1 and canonical maps for closures of the same genera.
Since both types of maps are grading preserving, we conclude that any canonical map
preserves the modified Z,-grading. |

Remark 5.11. The proof of Proposition 5.10 does not apply to other Floer-type the-
ories H because we need to use Floer’s excision theorem along a surface of genus
one.

5.3. Computations and applications

In this section, we do some calculations based on techniques introduced before.

At first, we deal with bypass exact triangles. Suppose ys3/x3 is a surgery slope
with y3 > 0. According to Honda [21], there are two basic bypasses on the bal-
anced sutured manifold (Y(K), y(x5,y5)), Whose arcs are depicted as in Figure 17.
The sutures involved in the bypass triangles were described explicitly in Honda [21].

Definition 5.12. For a surgery slope y;/x; with y; > 0, suppose its continued frac-
tion is
)1 1
— = [ag,a1,...,an] = a0 — ———
X1 ay — T
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a4

[

Figure 17. Bypass arcs on y(j,—1).

where a; < —2.1If y; > —x1 > 0, let
22[00,---,41,,_1] and E:[ao,...,an—|—1],
X2 X3

If —x1 > y1 > 0, we do the same thing for x;/(—y1). If y; > x1 > 0, we do the same
thing for y1/(—x1). If x; > y; > 0, we do the same thing for x; /(—y1). If y1/x1 =
1/0, then y,/x, = 0/1 and y3/x3 = 1/(=1). If y1/x1 = 0/1, let yo/x2 = 1/(—1)
and y3/x3 = 0/1. We always require that y, > 0 and y3 > 0.

Remark 5.13. It is straightforward to use induction to verify that for y; > —x; > 0,
X1 =x2+x3, and y1 =y2+ys.

Then the bypass exact triangle in Theorem 2.19 becomes the following.

Proposition 5.14. Suppose K C Y is a null-homologous knot, and suppose the sur-
gery slopes y; /x; fori = 1,2,3 are defined as in Definition 5.12. Suppose Wi,* and
wf’* are from two different bypasses, where * means the corresponding slope. Then
there are two exact triangles about W:.,* and wf,*, respectively.

Vo /x>
+.y3/x
SHI® (Y (K), _V(xz,m)) — SHI® (Y (K), _V(x3,y3))
/x /x
Vil Y

SHI® (=Y (K), —Y(x;.y1))

As stated in Proposition 2.20, the bypass maps V1, ¥», and Y3 are induced by
some cobordism maps. Then we have the following.
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Lemma 5.15. Suppose g is a large enough integer and suppose y;/x; fori = 1,2,3
is from Definition 5.12. Suppose further

X1 =x2+x3 and y;=y>+ys.

With respect to the canonical Z,-grading on SHI® in Definition 5.9, the parity of the
map V, is odd and those of the rest two are even. As a consequence,

X(SHIg (_Y(K)7 _V(xl,yl)))
= X(SHIg (=Y (K), _V(xa,y3))) + X(SHIg(_Y(K)v _V(xz,yz)))-

Proof. As in Proposition 2.20, we can fix a large enough g so that fori = 1,2, 3, there
are closures (Y;, R, w) for (=Y (K), —Y(x;,y;)) of genus g, and the bypass maps v,
Y¥,, and Y3 have the same Z, degree because the maps induced by Dehn surgeries
along three curves {1, ¢, and {3 in corresponding closures Y;\ int(Y(K)). Since we
only care about the Z, degrees of maps, in a slight abuse of notation, we do not
distinguish the bypass map and the map induced by Dehn surgery.

Fori = 1,2, 3, we can form corresponding closures (Z.U, R,w) as in (5.2) so that
the curves {1, (>, and {3 still lie in closures. Moreover, suitable surgeries along these
curves induces an exact triangle

U

v
SHI® (—=S3(U). —Y(x3,y5) —————— SHI¥(=S*(U), =¥(x,,31))

k i

SHI® (=S3(U), —V(x5.y»))

As in the proof of Lemma 5.8, with the help of Lemma 5.7, it suffices to check
that the parities of maps wIU , sz , and Wg? are odd or even as claimed, with respect
to the canonical Z,-grading on SHI® from Definition 5.9.

For the case of the unknot, the argument becomes straightforward: from Defini-
tion 5.6 and Lemma 5.2, we know that for any y > 0,

X(SHE (=S>(U), =y(x,)) = —»
Then the equation y; = y, + y3 implies that

X(SHE (=S>(U), =y, 1))
= X(SHIg (_S?’(U)v _V(xg,y3))) + X(SHIg (_S3(U)’ _y(xz,yz)))'
Note that the maps wiU fori =1,2,3 are coming from a real surgery exact triangle

as in Proposition 2.20, while the Z,-gradings on SHI? could possibly be shifted due
to the normalization in Definition 5.6 and the surgery along curves 1 and 7, as in
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Proposition 2.20. Hence, they still satisfy the hypothesis of Lemma 2.5. Thus, we
conclude that the parity of sz is odd and those of the other two are even. Similarly,
the parity of ¥, is odd and those of the other two are even, and we have

X(SHIg (_Y(K)’ —Y(x; ,y1)))
= X(SHI® (=Y (K). =V(x3,y5))) + X(SHI¥ (=Y (K), =V(x;,y,)))- L
Let Y be a closed 3-manifold and let K C Y be a null-homologous knot. Suppose
S is a minimal genus Seifert surface of K. Its genus is always denoted by g(S), which

is distinguished with g, the fixed genus of closures. We refer [42, Section 4] for the

definitions of sutures ', I, (y/x), the admissible surface with stabilization S°, the

* *

bypass maps ¥ ,,¥* ,, and numbers i, . i . To simplify our notation, we write

X5 (<Y, K i) = (SHI® (=Y(K), =Y(x,y), 57, 1)), (5.5)

where the Euler characteristic is with respect to the canonical Z,-grading on SHI® as
in Definition 5.9. We write

XY K) =) 8 (Y. K, i) (5.6)
i€Z

When |x| = 1, we write y/x as an integer. Also, we write
X5 (=Y K, i) = x50 (=Y, K, i)
to specify the meridional suture.

Lemma 5.16. Suppose Y is a closed oriented 3-manifold, and K C Y is a null-
homologous knot. For g € Z large enough and any i € Z, we have

X3(=Y. K.i) = x8(=Y.K,i) and x§(=Y.K,i)=0.
Proof. From [42, Proposition 4.14], we have the following two bypass exact triangles:

v0
SHI? (-Y(K), Ty, S%,i) ———— SHI® (=Y (K), T, S%,i)

e
] o
SHI? (-Y(K), —T, S7. i)

and

0

v
SHI® (Y (K),—To, S%,i +1) ——1 5 SHI®(—Y(K), T4, S%, i)

,(///-L
bl oy

SHI? (-Y(K), —T, S7. i)



Instanton Floer homology, sutures, and Euler characteristics 277

Hence, we obtain the following two equations from Lemma 5.15
XY, K i) = x5 (=Y, K,i) + x5 (=Y. K, 1),
X3(=Y. K i) = x§ (=Y. K.i + 1)+ x5(=Y. K, i).
By Axiom (A1-4), fori > g(S), we have
SHI® (-Y(K),—Ty, S%,i) = 0.
Hence, we conclude by (5.5) and (5.6) that
A=Y, K, g(S)) = rf (=Y. K,g(S)) and x5(=Y.K, g(S))=0.
The lemma follows from the induction on the grading i. |

Lemma 5.17. Suppose Y is a closed oriented 3-manifold, and K C Y is a null-
homologous knot. For the suture yx yy with y > 0, we know that

y—1
XY K D) =) )Y K i —id + il + ).
j=0

Proof. We only prove the case when x < 0. The other case is similar. First, if x = 1,
then we have a bypass exact triangle (in this case we write y = n)

v,
SHI® (—Y(K),—Ty, S7.i) dad

]
yy)

SHI® (—Y(K),—T,,S%i + 1)

SHI? (—Y(K), —Tps1, ST.1)

Hence, we can apply Lemma 5.15, Lemma 5.16, and the induction to conclude that

n—1

XEY K i) =Y xS (=Y, Ko i =il + il + ).
j=0

If x > 1, we can use the continued fraction description of y/x and apply an induc-
tion in the same spirit as in the proof of Lemma 5.2. |

Corollary 5.18. Suppose Y is a closed oriented 3-manifold, and K C Y is a null-
homologous knot. For the suture y(x, ) where y > 2¢(S), and for any i € 7Z so that

i2 —2g(8S)>i>i +2g(S),

max — "min

we know that
X5 (Y. K i) = x8(=Y, K).
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Proof. The corollary follows immediately from Lemma 5.17 and the fact that there
are only (2g(S) + 1) gradings with nontrivial elements for SHI®* (—Y(K),—I',, S7).
[

Lemma 5.19. Suppose Y is a closed oriented 3-manifold, and K C Y is a null-
homologous knot. Then we have

1Y K) = £x(IF(-Y)).

Proof. From Lemma 5.17, we know that for any n € Zx¢, we have
15 (=Y, K)=n-x5(-Y,K).

From [42, Lemma 4.9], we know that there is an exact triangle

SHI# (-Y(K),-T,) —— SHI®(=Y(K), —Ty11)

~

I*(=Y)
Hence, by Lemma 2.5, we know that there is a proper sign assignment for all n so that
+£x8(-Y. K) £ 5, (Y, K) £ y(I}(¥)) = 0.
Hence, the only possibilities are
1IAY) = £45(-Y. K). .

Proof of Proposition 1.19. It is an immediate corollary following Corollary 5.18,
Lemma 5.19 and the definition of the decomposition from [42, Section 4.3]. ]

For a knot K in S3, we can actually fix the sign ambiguity coming from different
choices of the fixed genus of the closures.

Lemma 5.20. For any knot K C S* and any positive integer g, we have
x8(=S3 K) = —1.

Proof. Since we adapt the normalization from Kronheimer and Mrowka [29, Sec-
tion 2.6], we can directly apply the results from them. In particular, for any knot K, in
[29, Section 2.4], a preferred closure (Y1, X1, ;) of (—S3(K), —I'y) withg(Z) =1
is chosen. Then they proved that

1 (11 (Y1) = —Ag(1) = —1.
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Note that this coincides with our choice of modified Z,-grading: when the Euler char-
acteristic is negative, we do not perform any shift.

The case g = 2 has already been studied in the proof of [29, Lemma 3.3]: another
preferred closure (Y2, X5, w,) with g(2,) = 2 for (—S3(K), —TI',,) is constructed, and
there is a cobordism W, from Y; U S! x =, to Y5 coming from Floer’s excision the-
orem. The canonical generator of /(S! x X,|%,) is proved to be at the odd grading
(cf. [44, Lemma 3.8], though the normalization of the canonical Z,-grading is differ-
ent). Moreover, the degree of the cobordism map W1 is odd (cf. [44, Proposition 3.6]).

For general g, it is straightforward to generalize the above construction for ¥; and
Y, to Yg and Yg 1. There is a similar cobordism W, from Yy U S x X5 to Y41, the
degree of which can be computed easily to be odd. Hence, by induction we conclude
that for all g,

x5(=S% K) = —1. "

By Lemma 5.20, we can identify x%(—S?, K) for all large enough g, we simply
write y,(—S3, K) = x5,(—S?3, K) instead. Applying Lemma 5.17, we know that for
any g large enough and y > 0,

Xi/x(_S3’ K) = —y.

Similarly, we simply write x,/x(—S?, K) instead.

Finally, we consider the projectively transitive system SHI(M, y) for a balanced
sutured manifold (M, y) defined in [3], which is independent of the choices of the
genus of the closures. The isomorphism class of SHI(M, y) and SHI® (M, y) are the
same. Similar to SHI® (M, y), it has a decomposition associated to an admissible
surface S C (M, y).

Definition 5.21. Suppose (M, y) is a balanced sutured manifold and S is an admiss-
ible surface in (M, y). For any i, j € Z, define

In [41, Section 5], the first author constructed a minus version of the instanton
knot homology via the direct system

+o+ = SHI(=S3*(K). Ty, SY)[g(K) — il

max
n

T SIS (K. g, SOI(K) — il o (5)

max

and define KHI~(—S3, K) to be the direct limit of (5.7). All Y 41 are grading
preserving after shifting, so there is a well-defined Z-grading (the Alexander grading)
on KHI™(—S3, K), which we write as

KHI™(=S°, K. i).
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By [41, Corollary 2.20], there is a commutative diagram

SHI(=S*(K), T, S9)[g(K) — i,

max

Vit SHI(=S>(K), Tn1, SH[g(K) — inar]

lmax

SHI(—S*(K), Tn+1, SH)[g(K) — ink] Vi

max

n+1
k}

SHI(—S>(K), T2, S7)[g(K) — i)

max

Hence, the maps {y/ , .} induce a map U on KHI~(-S3, K).

Proof of Proposition 1.21. From Lemma 5.15, the parity of maps 1//2,,1 4 are all
even, hence there is a well-defined Z,-grading on KHI™(—S3, K). Again, from
Lemma 5.15, we know that the parity of the map U is even, i.e., preserving the
Z-grading on KHI™(—S3, K). Finally, we can apply Lemma 5.17 and the fact

X(KHIf (=%, K)) = —Ag (1)

to conclude the desired formula. Note that by our normalization, the sign is negative.
]
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